
Willian Nalepa Oizumi

Synthesis of Code Anomalies: Revealing Design
Problems in the Source Code

Dissertação de Mestrado

Dissertation presented to the Programa de Pós Graduação em
Informática of the Departamento de Informática, PUC–Rio as
partial fulfillment of the requirements for the degree of Mestre
em Informática.

Advisor: Prof. Alessandro Fabricio Garcia

Rio de Janeiro
September 2015

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Willian Nalepa Oizumi

Synthesis of Code Anomalies: Revealing Design
Problems in the Source Code

Dissertation presented to the Programa de Pós Graduação em
Informática of the Departamento de Informática, PUC–Rio as
partial fulfillment of the requirements for the degree of Mestre
em Informática.

Prof. Alessandro Fabricio Garcia
Advisor

Departamento de Informática — PUC–Rio

Prof. Arndt von Staa
Departamento de Informática — PUC-Rio

Prof. Claudia Maria Lima Werner
UFRJ

Prof. José Eugenio Leal
Coordinator of the Centro Técnico Cient́ıfico — PUC–Rio

Rio de Janeiro, September 02nd, 2015

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

All rights reserved. It is not allowed the total or partial
reproduction of this work without the university, author and
supervisor authorization.

Willian Nalepa Oizumi

He received his Bachelor degree in Informatics from
Universidade Estadual de Maringa, Brazil in 2012.

Bibliographic data

Oizumi, Willian Nalepa

Synthesis of Code Anomalies: Revealing Design Problems
in the Source Code / Willian Nalepa Oizumi ; advisor: Ales-
sandro Fabricio Garcia. — 2015.

103 f. : il. ; 30 cm

Dissertação (Mestrado em Informática)-Pontif́ıcia Univer-
sidade Católica do Rio de Janeiro, Rio de Janeiro, 2015.

Inclui bibliografia

1. Informática – Teses. 2. Anomalia de Código. 3.
Problema de Projeto. 4. Śıntese. 5. Código Fonte. I. Garcia,
Alessandro Fabricio. II. Pontif́ıcia Universidade Católica do
Rio de Janeiro. Departamento de Informática. III. T́ıtulo.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Acknowledgments

Firstly, I would like to thank my beloved wife, Julia Antonia Dalbelo do

Prado Oizumi, who supported me during the realization of this work. There is

no words to describe her love, patience and kindness.

My deepest gratitude goes to my whole family, who always supported

me. A special thank goes to my aunt, Leticia Oizumi, who was responsible for

raising and educating me. Without her I would not have come this far.

I would like to thank my advisor, Alessandro Garcia, for giving me

the opportunity to work with him. His patience, energy and good will are

incredible. He contributed significantly to my professional growth, providing

the means for me to exceed my limits.

I also thank my colleagues from the OPUS Research Group and from the

Software Engineering Laboratory. In particular, I would like to thank Leonardo

Sousa, for all your help and fellowship.

I thank my friends Jorge Rodrigo, Jackes Martins, Jean Valera, Renato

Brito, Renato Galli, Renan Galli and Carlos Crivello.

I thank all the professors from PUC-Rio for their contribution to

my education. My appreciation also goes to my professors from UEM. In

particular, I would like to thank Thelma Colanzi.

Finally, I thank CAPES, FAPERJ and PUC-Rio for financial aid, without

which this work would not have been possible.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Abstract

Oizumi, Willian Nalepa; Garcia, Alessandro Fabricio (advisor).
Synthesis of Code Anomalies: Revealing Design Problems
in the Source Code. Rio de Janeiro, 2015. 103p. MSc. Dissertation —
Departamento de Informática, Pontif́ıcia Universidade Católica do Rio
de Janeiro.

Design problems affect almost all software projects and make their

maintenance expensive and impeditive. As design documents are rarely

available, programmers often need to identify design problems from the source

code. However, the identification of design problems is not a trivial task for

several reasons. For instance, the reification of a design problem tends to be

scattered through several anomalous code elements in the implementation.

Unfortunately, previous work has wrongly assumed that each single code

anomaly – popularly known as code smell – can be used as an accurate

indicator of a design problem. There is growing empirical evidence showing that

several types of design problems are often related to a set of inter-related code

anomalies, the so-called code-anomaly agglomerations, rather than individual

anomalies only. In this context, this dissertation proposes a new technique for

the synthesis of code-anomaly agglomerations. The technique is intended to:

(i) search for varied forms of agglomeration in a program, and (ii) summarize

different types of information about each agglomeration. The evaluation of

the synthesis technique was based on the analysis of several industry-strength

software projects and a controlled experiment with professional programmers.

Both studies suggest the use of the synthesis technique helped programmers to

identify more relevant design problems than the use of conventional techniques.

Keywords
Code Anomaly; Design Problem; Synthesis; Source Code;

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Resumo

Oizumi, Willian Nalepa; Garcia, Alessandro Fabricio. Śıntese de
Anomalias de Código: Revelando Problemas de Projeto no
Código Fonte. Rio de Janeiro, 2015. 103p. Dissertação de Mestrado —
Departamento de Informática, Pontif́ıcia Universidade Católica do Rio
de Janeiro.

Problemas de projeto afetam quase todo sistema de software, fazendo

com que a sua manutenção seja cara e impeditiva. Como documentos de

projeto raramente estão dispońıveis, desenvolvedores frequentemente precisam

identificar problemas de projeto a partir do código fonte. Entretanto, a

identificação de problemas de projeto não é uma tarefa trivial por diversas

razões. Por exemplo, a materialização de problemas de projeto tende a ser

espalhada por diversos elementos de código anômalos na implementação.

Infelizmente, trabalhos prévios assumiram erroneamente que cada anomalia

de código individual – popularmente conhecida como code smell – pode ser

usada como um indicador preciso de problema de projeto. Porém, evidências

emṕıricas recentes mostram que diversos tipos de problemas de projeto

são frequentemente relacionados a um conjunto de anomalias de código

inter-relacionadas, conhecidas como aglomerações de anomalias de código.

Neste contexto, esta dissertação propõe uma nova técnica para a śıntese de

aglomerações de anomalias de código. A técnica tem como objetivo: (i) buscar

formas variadas de aglomeração em um programa, e (ii) sumarizar diferentes

tipos de informação sobre cada aglomeração. A avaliação da técnica de śıntese

baseou-se na análise de diversos projetos de software da indústria e em um

experimento controlado com desenvolvedores profissionais. Ambos estudos

sugerem que o uso da técnica de śıntese ajudou desenvolvedores a identificar

problemas de projeto mais relevantes do que o uso de técnicas convencionais.

Palavras-chave
Anomalia de Código; Problema de Projeto; Śıntese; Código Fonte;

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Contents

1 Introduction 9
1.1 Motivating Example and Problem 10
1.2 Limitations of Existing Studies 12
1.3 Objective 14
1.4 Steps Towards the Synthesis of Code Anomalies 15
1.5 Dissertation Structure 16

2 Background and Related Work 17
2.1 Software Design 17
2.2 Software Design Problem 18
2.3 Code Anomalies 20

3 Synthesis of Code Anomalies 25
3.1 Code-anomaly Agglomerations 27
3.2 Summarization of Contextual and History Information 34
3.3 Topologies of Code-anomaly Agglomerations 38
3.4 Implementation 49
3.5 Limitations 54

4 Identifying Design Problems with Agglomerations: A Multi-Case Study 56
4.1 Study Definition 59
4.2 Results and Analysis 64
4.3 Threats to Validity 73
4.4 Concluding Remarks 74

5 Identification of Design Problems with Anomaly Agglomerations: An
Empirical Evaluation 75

5.1 Study Definition 78
5.2 Results 86
5.3 Threats to Validity 90
5.4 Concluding Remarks 91

6 Conclusion 93
6.1 Contributions 95
6.2 Future Work 96

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

List of Figures

1.1 Hierarchical agglomeration in the OODT system. 12

2.1 Partial View of Health Watcher’s Design 19
2.2 Concern Mixing in the Webgrid Component 19

3.1 Hierarchical agglomeration in the OODT system. 28
3.2 Meta model for Code-anomaly Agglomerations. 29
3.3 Inter-related anomalies in OODT 31
3.4 Scattered Concern in Mobile Media 34
3.5 Abstract Representation of Intra-component Agglomerations 39
3.6 Abstract model for Cross-component Agglomerations 41
3.7 Example of cross-component agglomeration 42
3.8 Abstract representation for Concern-based Agglomerations 44
3.9 Concern-based agglomeration in the Health Watcher system 45
3.10 Abstract model for Hierarchical Agglomerations 46
3.11 Abstract model for Intra-method Agglomerations 47
3.12 Intra-class and Intra-method agglomerations in the WorkflowPro-

cessorQueue class 48
3.13 Abstract model for Intra-class Agglomerations 49
3.14 Agglomerations View 50
3.15 Expanded Tree into the Agglomerations View 50
3.16 Description of an agglomeration 51
3.17 References of an agglomeration 52
3.18 Graph of an agglomeration 52
3.19 Information displayed in an agglomeration’s graph 53
3.20 History information about an agglomeration 53

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

1
Introduction

A design problem (or a design smell) represents the realization of either:

(i) unintended design decisions, which violate the original, intended design of

a system, or (ii) violations of well-known design principles (Garcia, Popescu,

Edwards & Medvidovic 2009)(Perry & Wolf 1992). Unwanted module depend-

encies (Perry & Wolf 1992) are a type of design problem falling in the first

category. Fat interface (Garcia et al. 2009) is an example of a design problem

in the second category. The maintainability and longevity of a system depends

directly on its design (MacCormack, Rusnak & Baldwin 2006)(van Gurp &

Bosch 2002). Therefore, design problems must be properly identified and re-

moved. However, the identification and understanding of design problems are

not trivial tasks, as they often need to rely on source code analysis. Design

documentation is rarely available or up-to-date (Macia, Arcoverde, Garcia,

Chavez & Staa 2012b).

For a long time, some authors simply assumed (Fowler 1999)(Hochstein &

Lindvall 2005) most design problems can be observed in a system’s implement-

ation through the detection of single code anomalies. However, recent studies

showed that this assumption is too simplistic (Macia et al. 2012b)(Oizumi,

Garcia, Colanzi, Ferreira & Staa 2014a). In fact, each design problem, in gen-

eral, is realized by various anomalous elements scattered in the implementation

(Macia et al. 2012b). In addition, a high proportion of individual code anom-

alies may not affect the system’s design.

Therefore, the identification of each design problem in a program are far

from being trivial. In order to decide whether and where a relevant design

problem is prevailing in the program, programmers first need to know: (i)

which are the code anomalies realizing the design problem, (ii) how these code

anomalies are related to each other, (iii) how these relationships are connected

to the design problem, and (iv) what are other code elements potentially

being also affected by the design problem. The gathering of all this scattered

knowledge is time-consuming and error prone. Ideally, this information should

be summarized and provided for programmers, so that they could diagnose

design problems in the implementation (Oizumi, Garcia, Sousa, Albuquerque

& Cedrim 2014b).

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 1. Introduction 10

However, the summarization of all relevant information for reasoning

about design problems in the implementation remains a challenge in software

engineering. The reason is that there is still limited knowledge about the

relationship of design problems and code anomalies. Therefore, there is a need

for conceiving a technique that synthesizes code anomalies. The synthesis

should search for groups of inter-related code anomalies using information

extracted from different system artifacts. This technique is required to help

programmers in diagnosing and characterizing design problems in their source

code. Nevertheless, to the extent of our knowledge, there is no technique for

the systematic synthesis of code anomalies. State-of-art techniques (Emden

& Moonen 2002)(Ratzinger, Fischer & Gall 2005)(Wong, Cai, Kim & Dalton

2011)(Marinescu 2004) do not even reveal any form of relationship between

code anomalies. A previous work has tried to partially classify a subset of

possible relationships between code anomalies (Macia et al. 2012b)(Macia,

Arcoverde, Cirilo, Garcia & Staa 2012a). However, the proposed technique is

not intended to explicitly support the synthetization of all relevant information

for the identification and diagnosis of design problems. For instance, it provides

very limited information about the relationships and surrounding context of

code anomalies.

1.1
Motivating Example and Problem

The relationship between a design problem and its counterpart code

anomalies is often complex. Prior work (Macia, Garcia, Popescu, Garcia,

Medvidovic & Staa 2012c)(Macia et al. 2012b)(Macia 2013) has shown that

each design problem is often realized by various code anomalies scattered in

the program. These anomalies interact across the code structure in order to

reify a single design problem in the program. Therefore, the detection of

individual code anomalies is only a first simple step to understand major

design problems. Many of these single anomalies are not related and are

not meaningful to any design problem. Without full knowledge about the

relationships between code anomalies, programmers cannot decide whether and

how anomalies represent a design problem. It also becomes hard to decide how

to refactor out the design problem from the program. Therefore, these tasks

can only be realized if programmers synthesize code anomalies into coherent

groups of code anomalies.

The cohesion of a group of code anomalies is determined by the relation

that exists between them. This relation between anomalies can assume dif-

ferent forms. For instance, code anomalies can be related through structural

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 1. Introduction 11

relationships in the program, such as method calls and inheritance relations.

Anomalies can also be related through relationships closer to the software

design. For instance, the anomalies can be located in the implementation of

the same design component.

A coherent group of code anomalies is called agglomeration of code

anomalies – or just agglomeration for brevity. As already mentioned, the

anomalies that compose an agglomeration may be related to each other

by different forms of relationship. For example, the code anomaly instances

in Figure 1.1 (three occurrences of Feature Envy) occur in different code

elements, but in the same hierarchy. That is, all of them implement the same

interface (Versioner), thereby contributing to form an anomalous hierarchical

structure. Given this relation, the three code anomalies can be grouped into

an hierarchical agglomeration. This type of agglomeration is useful to reveal

design problems that involve classes and interfaces related through hierarchical

relationships (i.e., inheritance or interface implementation). An hierarchy is

typically designed to segregate functionalities using polymorphism, which

usually leads to a better modularization and reuse of functionalities. However,

a badly designed hierarchy may cause the inverse effect in the design: reduce

modularization and reuse of functionalities.

In the given example, the hierarchical relationships connecting the indi-

vidual anomalies seem to be easy to spot. However, this is not the case for

most agglomerations. The programmer might not be able to notice these an-

omaly relationships if he/she just browses either the source code or the design.

Moreover, the analysis of code anomalies in isolation is not efficient, as isolated

code anomalies are weakly related to design problems (Macia 2013).

Therefore, there is a need for a synthesis technique. Such a technique

could reduce the effort required from programmers to identify design problems.

To achieve this objective, two main synthesis steps should be performed: (1)

search for instances of different forms of agglomeration, and (2) summarize

relevant information about each agglomeration instance.

A synthesis technique should use hierarchical relationships to group the

anomalies in the Versioner hierarchy (Figure 1.1). Moreover, a synthesis tech-

nique should help programmers to understand the context of each agglomera-

tion. For example, the surrounding context of the agglomeration in Figure 1.1

is represented by code elements coupled to the hierarchy. In other words, they

represent code elements that are clients or servers of anomalous classes in

the hierarchy. Even though they are not anomaly sources, such clients and

servers are also being directly affected by the design problem. Therefore, pro-

grammers also need to reason about them in order to determine the extent

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 1. Introduction 12

Figure 1.1: Hierarchical agglomeration in the OODT system.

of the design problem in the program. A synthesis technique should explore

this information by revealing the surrounding context of each agglomeration.

Moreover, other relevant information should be provided by the synthesis tech-

nique. For instance, information about each agglomeration’s evolution along

different versions of the system. This information would help to identify crit-

ical or irrelevant design problems, by revealing, for example, design problems

that are “expanding” or “shrinking” along different versions of the system.

1.2
Limitations of Existing Studies

Different techniques for code anomaly detection have been proposed

and studied (Emden & Moonen 2002)(Lanza & Marinescu 2006)(Wong et

al. 2011)(Mara, Honorato, Dantas, Garcia & Lucena 2011). However, to the

extent of our knowledge, none of them effectively help programmers to identify

design problems. They only present limited information about each code

anomaly, such as anomaly type and name of the main affected method or class.

Even worse, they are unable to reveal agglomerations of code anomalies that

may be realizing design problems in the source code. As a result, using these

techniques, programmers have to put a considerable effort in understanding

the context of each anomaly and in locating those that altogether contribute

to design problems. The synthesis technique proposed in this dissertation

overcomes the aforementioned limitations by (i) revealing agglomerations of

code anomalies composed by different forms, and (ii) providing a rich set of

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 1. Introduction 13

information about each agglomeration of code anomalies.

A few studies have recently investigated the impact of preliminary

forms of agglomeration in the maintainability of systems (Moha, Gueheneuc,

Duchien & Meur 2010)(Abbes, Khomh, Gueheneuc & Antoniol 2011)(Sjobert,

Yamashita, Anda, Mockus & Dyba 2013)(Yamashita & Moonen 2013). Their

studies bring up the notion that code anomalies are more harmful to the

system’s maintainability when they are related to other anomalies (i.e., when

they are agglomerated). However, they investigate only specific types of

code anomalies. Moreover, none of them investigated when agglomerations

actually represent (or not) design problems. More importantly, none of them

proposed a technique that searches for agglomerations and summarizes relevant

information about each agglomeration. Hence, this dissertation overcomes such

limitations by (i) investigating agglomerations composed by a varied set of

anomaly’s types, (ii) investigating the relation between agglomerations of code

anomalies and design problems, and (iii) proposing a new technique for the

synthesis of code anomalies.

Macia (Macia 2013) studied nine forms of relationship between code

anomalies. She observed that groups of code anomalies composed by these

relationship forms are better indicators of design problems than individual

code anomalies (Macia 2013). The results of her study revealed a statistically

significant relationship between some of these inter-related code anomalies

and design problems. However, Macia did not investigate how each form of

relationship is related to design problems. In addition, Macia did not analyze

the impact of inter-related code anomalies in the evolution of systems. We

overcome the limitations of her study by investigating (i) the relation of

different forms of agglomeration with design problems, and (ii) the impact

of agglomerations across the evolution of systems.

To conduct her study, Macia proposed and implemented a technique

to detect the nine types of inter-related code anomalies (Macia 2013). Such

technique overcomes limitations of conventional techniques for code anomaly

detection, since it exploits relationships between code anomalies. However, her

technique still has some noteworthy limitations. First and foremost, it provides

very little information about each group of code anomalies. To identify and

understand design problems using Macia’s technique, programmers still need

to manually grasp from the source code information about the surrounding

context of each agglomeration. Second, it does not provide specific visual aids

for each agglomeration topology. Finally, it does not allow programmers to

specify custom forms of relationship (i.e., the relationships used to group inter-

related code anomalies). Therefore, her technique does not meet the minimum

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 1. Introduction 14

requirements for a full-fledged synthesis technique. It is not able to summarize

information about anomalies that a programmer would use to identify design

problems. This dissertation addresses this gap in the literature, proposing and

evaluating a synthesis technique. This technique searches for different forms

of agglomerations, summarizes relevant information about each agglomeration

and allow programmers to specify custom forms of agglomeration.

1.3
Objective

There is growing evidence that code anomalies may be helpful to identify

and understand design problems (Macia et al. 2012c). Therefore, programmers

and researches should be equipped with proper means to reason about code

anomalies and their relationships. In this context, the main objective of

this dissertation is to propose and evaluate a new technique to synthesize

code anomalies. It is expected from the proposed technique to overcome key

limitations of state-of-art techniques (Section 1.2). To achieve this objective,

four goals were established. These goals provided guidance to the planning

and execution of this dissertation’s research. Next, details about each goal are

provided:

1. Propose a Synthesis Technique. As explained in the previous section,

current techniques are unable to effectively aid programmers in the iden-

tification of design problems. Therefore, the first goal of this dissertation

is to propose a new technique for the identification of design problems us-

ing code anomalies. This technique is called synthesis of code anomalies.

The proposal of a synthesis technique encompasses the following steps:

(1) gather the minimum set of requirements that a synthesis technique

must satisfy, and (2) develop tool assistance for programmers to use the

proposed technique.

2. Study the Relation of Design Problems and Agglomerations.

This goal consists of studying agglomerations to understand when and

how they represent (or not) design problems. This is essential to ensure

that the synthesis technique provides useful information to the identific-

ation of design problems.

3. Conduct a Controlled Experiment. After collecting evidence on the

relevance of agglomerations, it is essential to gather feedback about the

use of a synthesis technique. Therefore, this goal consists in evaluating

the proposed technique in the context of a controlled experiment. This

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 1. Introduction 15

experiment compares the synthesis technique with a state-of-art tech-

nique, which we name as conventional technique. With this experiment

it is possible to answer the following questions: (1) which was the most

useful technique, (2) how the proposed technique could be improved, and

(3) which are the most and least useful forms of agglomerations from the

point of view of programmers.

1.4
Steps Towards the Synthesis of Code Anomalies

In order to achieve the objective of this dissertation, complementary

studies were conducted. In order to achieve the first goal (i.e., “Propose a

Synthesis Technique”), the first step consisted in identifying the requirements

for devising a synthesis technique, i.e., the requirements for a technique that

searches for agglomerations and extracts relevant information about them.

In this dissertation, we analyzed characteristics of agglomerations and design

problems in the context of several systems with different characteristics.

This varied set of target systems allowed us to assume the requirements

can be generalized for most common types of software system. Using these

requirements, we proposed a synthesis technique (Chapter 3). In order to

provide full support for our synthesis technique, a tool was designed and

implemented. The implemented tool is aimed at supporting the identification

of design problems in Java systems (Oracle 2015). This tool was implemented

as a plug-in for the Eclipse IDE (Ecl 2015).Besides detecting different forms of

agglomeration, the tool provides useful information about each agglomeration.

Achieving the second goal – “Study the Relation of Design Problems and

Agglomerations”, we conducted an exploratory study in the context of seven

systems (Chapter 4). In this study, using different perspectives, we analyzed

when agglomerations represent design problems. This study provided positive

evidence about the relation of agglomerations and design problems. Moreover,

this study revealed that anomalies related through concern-based relationships

are more likely to represent design problems than those related through only

syntactic relationships.

Finally the last goal (“Conduct a Controlled Experiment”) was

achieved by conducting a controlled experiment with experienced program-

mers (Chapter 5). This experiment allowed us to see from the programmers

perspective whether the proposed technique is better (or not) than state-of-

art techniques. In the experiment, two different components were individually

evaluated by programmers. For the analysis of each component, subjects used

either the synthesis or conventional technique. While the first is proposed in

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 1. Introduction 16

this dissertation, the second is the technique used by most state-of-art tools

for code anomaly detection. In order to promote a fair comparison, both tech-

niques were used by all subjects. Overall, this evaluation revealed the use of a

synthesis technique leads to less false positives. After the evaluation, subjects

also provided feedback on how the synthesis technique can be improved. For

example, they said the technique should provide a prioritization algorithm to

help them in deciding which agglomerations should be analyzed first.

1.5
Dissertation Structure

The remainder of this dissertation is organized as follow. Chapter 2 in-

troduces background and outlines related work on inter-related code anom-

alies and design problems. Chapter 3 presents a detailed description about our

technique for the synthesis of code anomalies. Chapter 4 reports results for

the evaluations we conducted to understand and characterize code-anomaly

agglomerations. Chapter 5 describes results for the controlled experiment con-

ducted to evaluate the synthesis technique. Finally, Chapter 6 summarizes the

main contributions of this dissertation and presents our future work.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

2
Background and Related Work

This chapter contains the background and related work of this disser-

tation. Section 2.1 outlines the aspects of software design considered in this

dissertation. Next, Section 2.2 presents the concept of software design prob-

lem as well as provides illustrative examples. Finally, a brief overview of the

literature about code anomalies is presented in Section 2.3.

2.1
Software Design

Software design is concerned with various activities governing the con-

ception of the solution required to address the software stakeholders’ con-

cerns (Freeman & David 2004)(Booch 2004). In other words, software design

is the process of defining the organization of a system’s structure so that

the resulting functionality satisfies the stakeholders’ concerns (Freeman &

David 2004)(Booch 2004). Software design includes all the decisions before

actually programming. However, in certain software projects, decisions are of-

ten made in a way that is intertwined with programming. Software design can

be classified in two main stages (Booch 2004): (i) early software design (or soft-

ware architecture design) – this stage is focused on defining the overall organ-

ization of a software system into components (or sub-systems), interfaces and

their relationships, and (ii) detailed design – this stage is focused on achieving

more specific decisions governing the design of each software component.

In this dissertation, we mainly focus on early software design as the

most important design decisions are made in this stage. Thus, in this work,

software design represents the overall organization of the system into design

components, interfaces and relationships among them (Bass, Clements &

Kazman 2003)(Gorton 2006). Design components are elements which address

one or more stakeholders’ concerns (Taylor, Medvidovic & Dashofy 2009).

Each component has one or more provided interfaces. Services provided

by a component are exposed in the component’s interfaces. Interactions

between components are defined by connectors. A connector is a design

element that represents interactions among components and the rules that

governs those interactions (Mehta, Medvidovic & Phadke 2000). The following

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 2. Background and Related Work 18

types of interaction are provided by connectors: communication, coordination,

conversion and facilitation (Mehta et al. 2000).

2.2
Software Design Problem

A design problem occurs due to the addition of unintended design

decisions that either violate (1) the original, intended design of a system or (2)

general software modularity principles (Perry & Wolf 1992). A design problem

can be introduced when certain decisions are made before programming. In

addition, when software changes are made, the system’s design can degrade

due to new design problems being introduced (Hochstein & Lindvall 2005). We

refer to an individual manifestation of a design problem as a design problem

instance.

To illustrate the violation of an intended design, consider the Health

Watcher design in Figure 2.1. For each figure in this chapter, we rely on a

UML-like notation (Booch, Rumbaugh & Jacobson 2005). Elements that are

not part of UML are explained in each figure’s legend. We partially represent

the system implementation in two different views. At the top of Figure 2.1, we

represent the components of Health Watcher and interactions between them.

Solid arrows represent expected relationships between components; dotted

arrows represent unexpected relationships. We represent the concerns of the

Business component by characters within circles. At the bottom of Figure 2.1,

we represent some (but not all) classes of the Business component that have

instances of code anomalies (initials within circles). In this example, we have

three instances of design problems: (1) a dependency from Data to Business,

(2) a dependency from Data to GUI, and (3) a dependency from Business

to GUI. These dependencies were not part of the intended design of Health

Watcher. However, they were implemented in the actual design reified in the

source code, thus, violating the intended design.

Design problems are not restricted to violations of intended design rules.

Design problems also occur when elements of a design violate modularity

principles. Table 2.1 summarizes all the design problems considered in this

dissertation. Detailed information about design problems can be found in

(Martin 2002) and (Garcia et al. 2009). We decided to focus on this catalog

of design problems as they cover violations to a wide range of modularity

principles, such as abstraction, information hiding and separations of concerns.

In addition, these design problems capture all the problems we have found in

the systems used in the empirical studies of this dissertation (Chapters 4 and

5).

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 2. Background and Related Work 19

C D E P

HealthWatcherFacade

Component View

Class View
RMIFacadeAdapter

Legend

Shotgun Surgery God Class

Data Business

C

D E

P

GUI

Concurrency

Distribution

Persistence

Exception Handling

Expected Flow

B Business

B

A Data

A P

G GUI

G

SS

SS

GC

GC GC

Unexpected Flow

Design Component

Figure 2.1: Partial View of Health Watcher’s Design

webgrid

Legend

private void parse(File file) throws IOException,
SAXException {
 Document doc;
 synchronized (DOCUMENT_BUILDER) {
 doc = DOCUMENT_BUILDER.parse(file);
 }

 NodeList children = root.getChildNodes();
 for (int i = 0; i < children.getLength(); ++i) {
 Node child = children.item(i);
 if (child.getNodeType() == Node.ELEMENT_NODE) {
 if ("server".equals(child.getNodeName())) {

 if (server instanceof ProductServer)
 profileServers.add(server);
 } else
 if ("properties".equal(child.getNodeName())) {
 for (int j = 0; j < props.getLength(); ++j)

...

Long Method
public Object createHandler() throws
ClassNotFoundException, InstantiationException,
IllegalAccessException {

 List urlList = configuration.getCodeBases();
 Class clazz;
 if (urlList.isEmpty())
 clazz = Class.forName(className);
 else {
 URL[] urls = (URL[]) urlList.toArray
 (EMPTY_URL_ARRAY);

 }
 return clazz.newInstance();
}

...

Divergent Change

Server

Anomalous Code Snippet Design Component

Configuration

...

...

Figure 2.2: Concern Mixing in the Webgrid Component

As an example, consider the webgrid component from the Apache OODT

(Object Oriented Data Technology) system in Figure 2.2. The webgrid com-

ponent (1) retrieves resources (e.g., scientific datasets, images, and documents)

in platform-neutral formats and (2) describes and discovers resources using

extensible metadata. This component uses HTTP to transmit resources. The

Configuration class (which is encompassed by webgrid) holds the complete

runtime configuration of resource servers, metadata servers, properties, and

other settings for the webgrid component. The webgrid component is infected

by an instance of the Concern Mixing problem, which is caused by including

the implementation of interaction-related concerns along with system-specific

concerns. For example, besides implementing its main concern, the Configur-

ation class also performs conversion services (from and to XML files) through

the parse method. These interaction services are best delegated to a specific

connector detaching the conversion services from the main functionality of

Configuration. Like the Configuration class, other classes in webgrid also con-

tribute to the Concern Mixing problem.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 2. Background and Related Work 20

Table 2.1: Design Problems
Name Description

Fat Interface
(FI)

Interface of a design component that offers only a
single, general entry-point, but provides two or
more services.

Unwanted Dependency
(UD)

Dependency that violates a intended design rule.

Concern Mixing
(CM)

Component that mixes extensive interaction-related
concerns (e.g., conversion) with a high-level concern.

Cyclic Dependency
(CD)

Two or more design components that directly or
indirectly depend on each other.

Multiple
Interaction Types

(MI)

Two interaction types that are used to link the
same pair of components.

Scattered Concern
(SC)

Multiple components that are responsible
for realizing the same design concern.

Overused Interface
(OI)

Interface that is overloaded with many clients accessing
it. That is, an interface with “too many clients”.

Unused Interface
(UI)

Interface that is never used by external components.

2.3
Code Anomalies

A code anomaly, popularly known as a “code smell”, is a symptom

of a bad decision observed in a program’s low-level structure. Examples of

code anomalies are Long Method, God Class, Shotgun Surgery, Feature Envy,

Divergent Change and Data Class (Fowler 1999)(Lanza & Marinescu 2006).

There are several techniques and tools in the literature that aim at detecting

code anomalies (Emden & Moonen 2002)(Ratzinger et al. 2005)(Wong et al.

2011)(Marinescu 2004). Table 2.2 presents the complete list of code anomalies

considered in this work.

Detection Strategies (Marinescu 2004) is the most widely-used technique

for the detection of code anomalies. This technique exploits information that

is extracted from the source code structure, relying on the combination of

static code metrics and thresholds into logical expressions. Each detection

strategy is a heuristic that identifies code elements that possibly suffer from

a particular code anomaly (Marinescu 2004). Therefore, as we will describe

latter, the synthesis technique (Chapter 3) uses detection strategies to extract

code anomalies from a program.

Code anomalies have been largely studied by several researchers and

practitioners. Therefore, the remainder of this section is dedicated to present an

overview of the code anomaly’s literature. Section 2.3.1 outlines studies on the

relation of code anomalies and design problems. Finally, Section 2.3.2 presents

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 2. Background and Related Work 21

Table 2.2: Code anomalies
Type Description

Brain Class/God Class
Long and complex class that centralizes the
intelligence of the system

Brain Method
Long and complex method that centralizes the
intelligence of a class

Data Class
Class that contains data but not behavior related
to the data

Disperse Coupling

The case of an operation which is excessively tied
to many other operations in the system, and
additionally these provider methods that are
dispersed among many classes

Feature Envy
Method that calls more methods of a single
external class than the internal methods of its own
inner class

Intensive Coupling
When a method is tied to many other operations
in the system, whereby these provider operations
are dispersed only into one or a few classes

Refused Parent Bequest
Subclass that does not use the protected methods
of its superclass

Shotgun Surgery
This anomaly is evident when you must change
lots of pieces of code in different places simply to
add a new or extended piece of behavior

a brief analysis of studies about visualization techniques for anomaly detection.

Even though our research does not focus on software visualization, we also

discuss why existing visualization techniques are not sufficient to properly

support identification of design problems.

2.3.1
Studies on the Relation of Code Anomalies and Design Problems

Design problems have caused the discontinuation or reengineering of sev-

eral software projects (Hochstein & Lindvall 2005). As previously mentioned,

programmers frequently need to detect such problems in the source code due

to the lack of formal design documentation. In other words, it is expected that

a wide range of design problems are reflected in a system’s implementation

through code anomalies (Fowler 1999)(Hochstein & Lindvall 2005). A method

infected by Long Method (Fowler 1999), for example, is highly complex and

contains excessive functionality. As an example, consider the code snippet of

the method parse on the right side of Figure 2.2. This method parses a serial-

ized configuration file and stores the result to an instance of the Configuration

class. The parse method is complex and overloaded in terms of responsibilities,

as manifested as nested conditions and loops that handle different details of

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 2. Background and Related Work 22

the configuration file. The method’s complexity reduces its understandability

and maintainability. To reduce this complexity, the method can be refactored

into smaller methods. However, this refactoring in isolation may not be enough

to remove the Concern Mixing problem from webgrid. As already mentioned, a

group of inter-related classes of this component contributes to the same prob-

lem. Therefore, the full removal of Concern Mixing depends on the refactoring

of multiple classes.

The impact of code anomalies has been largely studied. Khomh et al.

(Khomh, Penta & Gueheneuc 2009), Kim et al. (Kim, Sazawal, Notkin &

Murphy 2005), Lozano et al. (Lozano & Wermelinger 2008) and Olbrich et al.

(Olbrich, Cruzes & Sjoberg 2010) investigated the impact of code anomalies

throughout the system’s evolution. Specifically, the authors analyzed whether

the number of code anomalies tended to increase over time, and how often they

resulted in code changes. D’Ambros et al. (D’Ambros, Bacchelli & Lanza 2010)

observed that code anomalies are often related to software defects. Sjoberg et

al. (Sjobert et al. 2013) showed that single code anomalies were not related to

maintenance effort. Macia et al. (Macia et al. 2012b) analyzed the relevance of

code anomalies to identify design problems. This research revealed that none

of the studied code anomalies was consistently a strong indicator of design

problems. The results also revealed that a higher proportion of individual code

anomalies did not impact the system design.

Moha et al. (Moha et al. 2010) documented relationships among code

anomalies that are recurrently related to four design anomalies. According to

them (Moha et al. 2010), relationships among Long Method and God Classes

are usually indicators of Spaghetti Code design anomaly. The study by Abbes

et al. (Abbes et al. 2011) brings up the notion of interaction effects across code

anomalies. They concluded that classes and methods identified as God Classes

and God Methods in isolation had no effect on effort, but when appearing

together, they led to a statistically significant increase in maintenance effort.

Yamashita and Moonen (Yamashita & Moonen 2013) observed that inter-

related code anomalies negatively affect systems maintenance. None of the

aforementioned authors investigated the relation of design problems and code-

anomaly agglomerations. In this context, Macia (Macia 2013) observed that

a specific set of nine inter-related code anomalies are better indicators of

design problems than individual code anomalies. The results of her study

revealed a statistically-significant relationship between some of these inter-

related anomalies and design problems.

None of the aforementioned studies investigated when agglomerations

actually represent (or not) design problems. More importantly, none of them

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 2. Background and Related Work 23

proposed a technique that searches for agglomerations and summarizes relev-

ant information about each agglomeration. Hence, this dissertation overcomes

such limitations by (i) investigating agglomerations composed by a varied set

of anomaly’s types, (ii) investigating the relation of different forms of agglom-

eration with design problems, (iii) evaluating the impact of agglomerations

across the evolution of systems, and (iv) proposing a new technique for the

synthesis of code anomalies.

2.3.2
Visualization Techniques for Anomalies Detection

Some researchers have proposed the use of software visualization tech-

niques specifically for the context of code anomaly detection (Murphy-Hill

& Black 2010)(Wettel & Lanza 2008)(Carneiro, Silva, Mara, Figueiredo,

Sant’Anna, Garcia & Mendonça 2010)(D’Ambros et al. 2010). Murphy-Hill

and Black (Murphy-Hill & Black 2010) proposed an anomaly detector, called

Stench Blossom. Their technique is based on an interactive visualization en-

vironment. It provides a programmer with a quick, high-level overview of the

anomalies in the code. According to the programmer’s needs, Stench Blos-

som provides additional information to help him in understanding the sources

of those code anomalies. Wettel and Lanza (Wettel & Lanza 2008) proposed

disharmony maps, a visualization technique to locate code anomalies in large

systems. A disharmony map displays the whole system using a 3D visualiza-

tion approach based on a city metaphor. Besides showing classes and methods

of the system, this map also shows results from conventional anomaly detec-

tion strategies. The work of Carneiro et al. (Carneiro et al. 2010) presents a

multi-view approach that enriches four categories of source code views in or-

der to support the visualization of stakeholders’ concerns. The enriched views

enable programmers to visualize how certain high-level concerns (e.g., persist-

ence, error handling, caching, security and the like) are realized in the program

elements. The proposed approach is not intended to support the detection of

groups or instances of code anomalies. Instead, their approach consists in com-

bining different forms of concern’s view to spot anomalous classes and meth-

ods. It does not provide specific feedback about the type of the code anomaly

infecting classes and methods.

All techniques described above are somehow helpful to the identification

of design problems. However, none of them directly explores relationships to re-

veal and synthesize code-anomaly agglomerations. The programmer still needs

to visually try to recognize which visual metaphors and hints might represent

individual anomalies or agglomerations. In addition, existing program visual-

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 2. Background and Related Work 24

ization techniques do not explicitly summarize all the information about ele-

ments composing an agglomeration. Hence, they need underlying algorithms to

perform this activity. In this context, the synthesis technique proposed in this

dissertation is complementary to existing software visualization techniques.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

3
Synthesis of Code Anomalies

Code anomalies are often not isolated from each other in a pro-

gram (Macia et al. 2012a)(Macia et al. 2012b)(Macia et al. 2012c)(Macia

2013)(Oizumi et al. 2014a)(Oizumi, Garcia, Colanzi, Staa & Ferreira 2015).

They are related to each other in different forms, thereby composing the

so called code-anomaly agglomerations. The information concerning code-

anomaly agglomerations may be useful for programmers to reveal more relevant

problems in a software system, such as design problems. However, to the ex-

tent of our knowledge, there is no state-of-art technique that enables someone

to explore this information. Moreover, most techniques for design problem

identification depend on formal design documentation, which is usually not

available. The only option left is to resort to source code analysis. However,

existing techniques for source code analysis do not explore and identify re-

lationships between code anomalies (Fowler 1999)(Lanza & Marinescu 2006).

Instead, they provide only individual code anomalies information.

Nevertheless, design problems are usually scattered in the implementa-

tion of multiple code elements of a program. The reason is that a single design

decision is usually reified in multiple code elements. These program elements

may be in “distant” locations of the source code. Therefore, it becomes hard

to reason about their relationships and infer how they relate to a design prob-

lem. In addition, code elements affected by a design problem are not always

explicitly related to each other. As a result, this task tends to be even more

error prone and time consuming, even for experienced programmers. As a con-

sequence, many programmers neglect design problems until it is impossible to

maintain the program without removing them. Therefore, a new technique to

assist programmers in the identification of design problems is required.

To overcome the limitation of existing techniques and properly assist pro-

grammers, a technique for the Synthesis of Code Anomalies (SCA) is proposed

and evaluated in this work. SCA is the systematic search and summariza-

tion of information about code-anomaly agglomerations (Oizumi et al. 2014b).

SCA considers different forms of relationship to search for occurrences of code-

anomaly agglomerations in a program (Oizumi et al. 2014b). This is important

because each form of agglomeration provides information that other forms

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 26

may not provide. Moreover, each of them presents a distinct perspective to

analyze code anomalies (Oizumi et al. 2014a)(Oizumi, Garcia, Sousa, Cafeo &

Zhao 2016). The main steps of SCA are presented below:

– Detect Code Anomalies. Using a conventional technique for code

anomaly detection, SCA analyzes the source code of the program aiming

at detecting different types of code anomaly.

– Search for Agglomerations. After the detection of code anomalies is

completed, SCA explores different forms of relationship between anom-

alies in order to search for code-anomaly agglomerations.

– Summarize Contextual Information. To provide valuable informa-

tion about the agglomerations found, SCA also summarizes contextual

information about each agglomeration, including the list of code elements

surrounding each agglomeration, such as information about the agglom-

eration’s surrounding code elements.

– Summarize History Information. Finally, SCA uses information

about past versions of the program to provide historical information

about each agglomeration.

To better understand the information provided by SCA, consider the

hierarchy of classes presented in Figure 3.1. This figure shows three snap-

shots of the Versioner hierarchy. Each snapshot refers to a specific version

of the Apache OODT system (Apa 2015)(Mattmann, Crichton, Medvidovic

& Hughes 2006). In OODT, the Versioner hierarchy is responsible for man-

aging and storing versions of different Product types using alternative storage

strategies. All classes in the Versioner hierarchy have to implement the cre-

ateDataStoreReferences method. This method has two parameters: a Product

instance and a Metadata instance. As there are no sub-classes for each type

of Product, each createDataStoreReferences implementation has to decide if

it is handling the correct Product type (e.g., the MetadataBasedFileVersioner

must only process “flat” products). Consequently, the Product type handled by

each Versioner implementation cannot be discovered from the createDataStor-

eReferences interface. Instead, this can only be discovered by analyzing details

of each createDataStoreReferences implementation. Hence, the programmer

can conclude the Versioner implementations are affected by the Fat Interface

design problem. This design problem occurs in interfaces that expose multiple

functionalities through a general interface. This problem could only be identi-

fied through a careful analysis of OODT source code. However, as we already

mentioned, this task is not trivial. In this context, SCA would be helpful as

described below.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 27

All implementations of Versioner (SingleFileBasicVersioner, BasicVer-

sioner, DateTimeVersioner and MetadataBasedFileVersioner) are affected by

instances of the Feature Envy anomaly. SCA detects these instances of code

anomaly using metrics based strategies (Marinescu 2004). All these anomaly

instances occur in classes that implement the same interface – which is the Ver-

sioner interface. This means the anomalous classes are inter-related through

hierarchical relationships. SCA could, for example, explore such relationships

to detect an agglomeration.

Besides searching for this agglomeration, SCA would also provide con-

textual information about it. Contextual is defined as information about the

relationships between the agglomeration and its surrounding code elements. In

the example of Figure 3.1, the code elements Metadata, Product, Versionin-

gUtils, XmlRpcFileManager, XmlRpcFileManagerClient and GenericFileMan-

agerObjectFactory are not anomalous. However, they are part of the agglomer-

ation’s context, as they are related to anomalous classes in the agglomeration.

This information is important because a design problem affects not only the

anomalous code elements in the agglomeration, but also the agglomeration’s

surrounding code elements. Moreover, if a programmer eventually removes the

design problem, some surrounding classes would surely be affected.

Finally, SCA would provide history information about the agglomeration.

In the left side of Figure 3.1, there is an example of history information for the

Versioner agglomeration. Using this information, the programmer is able to see

how the agglomeration changed along the evolution of OODT, for instance. The

Versioner agglomeration, for example, was “born” with only two anomalous

code elements comprising it. Then, the agglomeration size expanded in the two

subsequent versions. This agglomeration growing behavior along the project

history may indicate the presence of an even more harmful design problem in

OODT.

The remainder of this Chapter is organized as follows. Section 3.1

provides a detailed discussion about code-anomaly agglomerations. Section 3.2

presents details about the summarization of contextual and history informa-

tion. Section 3.3 outlines different topologies of agglomerations. The imple-

mentation of a tool for the synthesis of code anomalies is presented in Sec-

tion 3.4. Finally, Section 3.5 summarizes the current limitations of SCA.

3.1
Code-anomaly Agglomerations

A code-anomaly agglomeration is a coherent group of inter-related code

anomalies that contributes to the realization of a bigger design problem.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 28

Figure 3.1: Hierarchical agglomeration in the OODT system.

Code anomalies in an agglomeration are inter-related through syntactic or

semantic relationships. Examples of syntactic relationships include method

calls, inheritance relations, and the same enclosing component. Semantic

relationships between two or more code anomalies occur when the anomalous

code elements are intended to realize a single design’s purpose or concern. A

concern is a property or functionality of interest to the designers of a system,

but its realization is not necessarily modularized in a single module in the

source code. The subsection below presents and describes a meta model for

agglomerations. This meta model is helpful to understand how different forms

of relationship are explored to form agglomerations.

3.1.1
Agglomeration Meta Model

Figure 3.2 uses UML (Booch et al. 2005) to represent the agglomeration

meta model. The first meta model element that should be understood is code

element. In this work, a code element is the most basic unit of description in the

system implementation. Two code element types are considered, which are (1)

class and (2) method. We do not support fine-grained program elements (e.g.,

code blocks or statements) as they are less relevant to the system’s design.

In addition, the consideration of code blocks and statements would lead to

an intractable number of agglomerations. Code-anomaly agglomerations are

related to code elements in the following way: each code anomaly affects a

single code element. On the other hand, a code element may be affected by zero

or multiple code anomalies. A code-anomaly agglomeration groups a set of one

or more code anomalies. Conversely, each code anomaly may be a member of

multiple agglomerations. In addition, each code anomaly is an instance of an

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 29

Figure 3.2: Meta model for Code-anomaly Agglomerations.

anomaly type. An anomaly type has an anomaly strategy in charge of detecting

code anomaly instances. Moreover, a type of code anomaly is associated with

a specific type of code element that may be affected by the anomaly type

instances.

Code anomalies are grouped into agglomerations based on one or more

relationships. The relationships used for each agglomeration are defined by

specific topologies. Moreover, a topology provides a specific strategy in charge

of characterizing occurrences of agglomerations. This strategy defines the

algorithm used to search for agglomerations. In this work, we defined strategies

for six topologies. These strategies are described in Section 3.3. Each strategy

may explore different relationship types. We present below a list of the types

of relationship that can be explored by a strategy :

– Hierarchical Relationship. Code elements that implement the same

interface or inherit from the same code element.

– Dependency Relationship. Code elements related by method calls or

type references.

– Component Relationship. Code elements enclosed by the same com-

ponent.

– Concern Relationship. Code elements implementing the same con-

cern. In this context, a concern is a system’s functionality that may be

(or not) scattered in the implementation of diverse code elements.

Each strategy considers different types of element. The following types of

elements can be used in a strategy : class, method and component. Differently

from other meta model elements, a component represents a sub-system, which

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 30

may be associated with either an implementation package or a cohesive group

of classes. Since each component is not necessarily mapped directly to a single

code element, this mapping needs to be obtained from some tacit knowledge

(i.e., from programmers) or some formal documentation. This mapping can be

performed manually or using some design recovery technique (Garcia, Ivkovic

& Medvidovic 2013). In case none of these options are feasible, we consider

that a component is mapped to a single package in the implementation.

The combination of element types and relationship types defines the scope

considered in the agglomerations of a specific topology. Finally, a design problem

may be reified in the source by one or multiple (anomalous) code elements,

which can be classes or methods. To make clear how design problems are related

to agglomerated anomalies in the program, Section 3.1.2 presents motivational

examples.

3.1.2
Code Anomaly Relationships: Motivating Examples

The first motivating example is the webgrid component (Figure 2.2)

which was extracted from the Apache OODT system (Apa 2015). The webgrid

component (1) retrieves resources (e.g., scientific datasets, images, and docu-

ments) in platform-neutral formats and (2) describes and discovers resources

using extensible metadata. This component uses HTTP to transmit resources.

The Configuration class (which is encompassed by webgrid) holds the com-

plete runtime configuration of resource servers, metadata servers, properties,

and other settings for the webgrid component.

The webgrid component has an instance of the Concern Mixing design

problem (Garcia et al. 2009), which is caused by including the implementation

of interaction-related functionality along with system-specific functionality.

For example, besides implementing its main concern, the Configuration class

also performs conversion services (from and to XML files) through the parse

method. These interaction services are best delegated to a specific connector —

detaching the conversion services from the main functionality of Configuration.

Like the Configuration class, other classes in webgrid also contribute to the

Concern Mixing problem.

Figure 3.3 contains a partial view of webgrid. This figure shows two in-

stances of code anomaly. First, it was observed that the createHandler method

in the Server class is commonly changed in different ways for diverse reas-

ons. Therefore, this method is infected by the code anomaly called Divergent

Change. In addition, the parse method in the Configuration class is highly

complex and fulfills several responsibilities. This method parses a serialized

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 31

webgrid

Legend

private void parse(File file) throws IOException,
SAXException {
 Document doc;
 synchronized (DOCUMENT_BUILDER) {
 doc = DOCUMENT_BUILDER.parse(file);
 }

 NodeList children = root.getChildNodes();
 for (int i = 0; i < children.getLength(); ++i) {
 Node child = children.item(i);
 if (child.getNodeType() == Node.ELEMENT_NODE) {
 if ("server".equals(child.getNodeName())) {

 if (server instanceof ProductServer)
 profileServers.add(server);
 } else
 if ("properties".equal(child.getNodeName())) {
 for (int j = 0; j < props.getLength(); ++j)

...

Long Method
public Object createHandler() throws
ClassNotFoundException, InstantiationException,
IllegalAccessException {

 List urlList = configuration.getCodeBases();
 Class clazz;
 if (urlList.isEmpty())
 clazz = Class.forName(className);
 else {
 URL[] urls = (URL[]) urlList.toArray
 (EMPTY_URL_ARRAY);

 }
 return clazz.newInstance();
}

...

Divergent Change

Server

Anomalous Code Snippet Design Component

Configuration

...

...

Figure 3.3: Inter-related anomalies in OODT

configuration file and stores the result to an instance of the Configuration

class. The parse method is complex and overloaded in terms of responsibilit-

ies. Such complexity and responsibility overload manifest as nested conditions

and loops that handle different details of the configuration file. Thus, the parse

method is infected by the Brain Method anomaly.

These anomalies in isolation may not represent severe design problems.

However, the Configuration and Server classes are inter-related through a

component relationship, since they are explicitly coupled to each other and both

are enclosed by the webgrid component. Therefore, Configuration and Server

form a code-anomaly agglomeration, which should be throughly analyzed to

identify the Concern Mixing problem.

The individual analysis of an anomaly instance – of Brain Method

or Divergent Change – could eventually help a programmer to identify the

Concern Mixing problem in specific cases. In exceptional circumstances, a

Concern Mixing problem may be confined to a single method or even to an

inner block of code. In such cases, the programmer would have to concentrate

his/her effort mostly in the affected method. However, in the webgrid example

the design problem is reified by at least two classes, as illustrated above.

Therefore, a programmer would have to inspect all classes in the webgrid

component in order to fully understand the problem itself and its extent.

Otherwise, a partial analysis of individual code anomalies in those classes

can lead to an even worse situation. The programmer assumes the problem

is confined to a single method and neglects the inspection and refactoring of

other methods. Thus, he/she would remove only a single part of the problem.

As a consequence, the Concern Mixing problem would still remain in the source

code.

Therefore, in the webgrid example, the analysis of an agglomeration

would be much more beneficial. The programmer would be provided with a

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 32

coherent group of anomalous classes, which are strong candidates of classes

affected by a design problem. This agglomeration would spare the program-

mer’s effort, as he/she would not need to manually search for inter-related

anomalous classes. Moreover, an agglomeration, identified with the SCA tech-

nique, contains information about its surrounding context. This would help

the programmer to understand how the design problem may be affecting other

non-anomalous classes. In the webgrid example, the intra-method agglomera-

tion is surrounded by the following java servlets (Oracle 2015): ConfigServlet,

LoginServlet, ProductQueryServlet and ProfileQueryServlet. Each of them is re-

sponsible for handling specific HTTP requests. For example, ProductQuerySer-

vlet is responsible for receiving, handling and replying product queries.

In the second example, consider again the Versioner hierarchy in Fig-

ure 3.1. As explained in the beginning of this chapter, the Versioner hierarchy

is responsible for managing and storing versions of different Product types us-

ing alternative storage strategies. All classes in the Versioner hierarchy imple-

ment the createDataStoreReferences method. This method has two parameters:

a Product instance and a Metadata instance. As there are no sub-classes for

each type of Product, each createDataStoreReferences implementation has to

decide if it is handling the correct Product type (e.g., the MetadataBasedFi-

leVersioner only deals with “flat” products). Consequently, the Product type

handled by each Versioner implementation cannot be discovered from the cre-

ateDataStoreReferences interface. Hence, the Versioner implementations are

infected by the Fat Interface problem, which is an interface that exposes mul-

tiple functionalities through a general interface.

While a Fat Interface decouples components and simplifies the use of it,

such components are also less understandable and analyzable. Determining

the actual services exposed by such a component requires inspecting its

implementation. Furthermore, the generality of the interface, which simplifies

its use, also makes it easier to misuse, since different functionalities are exposed

by the same interface.

The Versioner hierarchy contains a hierarchical code-anomaly agglom-

eration. More specifically, the method createDataStoreReferences in several

classes is affected by the Feature Envy code anomaly. This anomaly in isola-

tion does not represent severe design problems. Nevertheless, it might indicate

a deeper design problem in the system when it is inter-related with other

anomalies. In the given example, the Feature Envy instances are inter-related

through hierarchical relationships. Thus, these hierarchically-related anomalies

could be analyzed together to spot the Fat Interface problem. As already men-

tioned in the first example, it would be much more difficult to identify a design

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 33

problem like this by observing only a single code anomaly. The programmer

would have an extra effort to spot the whole extension of the Fat Interface

problem.

The last example was extacted from the Mobile Media system (Young

2005). Mobile Media is an academic software product line to derive applications

that manipulate photos, videos and music on mobile devices (Young 2005).

During the evolution of Mobile Media, its Controller component implementa-

tion had to be refactored into three components. This “wide” refactoring had

to be made as it was no longer possible to maintain a single component over

time; both the interface and the class realizing it in the code had to artificially

change every time other non-related requirements were being implemented or

modified. The artificial changes were not only related to the Controller com-

ponent, but also its client classes, which were realizing other requirements. In

other words, there were increasingly-critical ripple effects being observed as

the system evolved. The overload of adjacent responsibilities in the Control-

ler component reflected in the design as the Concern Overload and Scattered

Concern problems (Macia et al. 2012b). Figure 3.4 depicts a partial view of the

Mobile Media design. This figure shows two components: Controller and View.

Using SCA, we observed a certain case of anomaly agglomeration already in the

first version of Mobile Media. This agglomeration was composed by 11 classes,

which were located in the implementation of Controller and View. Each of the

agglomeration’s classes was affected by multiple anomaly instances. The type

of each anomaly instance is described in the legend of Figure 3.4.

The agglomeration of Figure 3.4 was not formed with explicit relation-

ships, such as hierarchical and dependency relationship. Instead, the code an-

omalies realizing Concern Overload and Scattered Concern in the source code

were inter-related through concern relationships. This means that each of these

classes was not necessarily directly related, but there was a cross-cutting con-

cern, called Photo Label, establishing a coherent relation between them. This

concern relationship was observed already in the first version of Mobile Media.

Thus, the instance of Concern Overload and Scattered Concern problems were

cases of congenital design problem, as they were “born” with Mobile Media’s

design. The detected agglomeration provided useful information about how

different anomalies were contributing to such critical design problems.

For example, the multiple combinations of Divergent Change and Shot-

gun Surgery, together with information about the Photo Label concern, were

very strong indicators of the Scattered Concern problem. Divergent Change

indicates that a class/method has different reasons to change. Shotgun Sur-

gery is an evidence that multiple small changes would be performed in order to

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 34

change a single concern. Finally, the information about Photo Label shows that

it is scattered in the implementation of multiple anomalous code anomalies. If

we had analyzed each of these data in isolation, the identification of Scattered

Concern would be much more difficult. The reason is that, each of these data

is only a small evidence of a design problem. Therefore, when individually ana-

lyzed, they are not able to reveal the fully extension of the problem. On the

other hand, when we analyzed a combination of them, which was provided by

the agglomeration, we identified how the anomalous classes were realizing the

Scattered Concern problem.

View

AddMediaToAlbum

DC

MediaListScreen

LM

NewLabelScreen

DC

DC

DC LM Long Method

Legend

Shotgun Surgery God Class

Controller

P Photo Label

Design Component

MediaController

GC

MediaListController

SS

MusicPlayController PhotoViewController

PlayVideoController

LM

VideoCaptureController

LM

SmsSenderController

LM

SmsReceiverController

LM

LM

SSSS

SS DC

LM SS DCLM SS DC

Divergent Change

P

P

P

P

P

P

P P

P

P

P

GCSS

Figure 3.4: Scattered Concern in Mobile Media

3.2
Summarization of Contextual and History Information

Each agglomeration carries a varied set of information that may help pro-

grammers to identify design problems. However, besides being unable to reveal

the relationships between code anomalies, most of the techniques for code an-

omaly detection (Emden & Moonen 2002)(Lanza & Marinescu 2006)(Wong et

al. 2011)(Mara et al. 2011) provide very little information about the anomalous

elements. In general, they provide only the anomaly type and the name of the

affected code element. Therefore, in order to overcome this limitation, the sum-

marization of information about code-anomaly agglomerations was proposed.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 35

This summarization should include two types of information about each ag-

glomeration: (1) contextual information and (2) history information. Next, a

detailed description about these two types of information is provided.

3.2.1
Contextual Information

For an agglomeration, the context is composed by its surrounding code

elements – i.e., external code elements related to one or more code elements of

the agglomeration. This information includes both (i) external elements that

“use” services provided by agglomeration’s elements, and (ii) external elements

that provide services to agglomeration’s internal elements. In the meta model

(Figure 3.2), this information is represented as a self relationship involving

Code Element meta model element. This relationship establishes that a Code

Element can be related to zero or many (external) Code Elements.

Figure 3.1 illustrates an agglomeration related to external code ele-

ments. In this example, there is an agglomeration in the Versioner hierarchy:

BasicVersioner, DateTimeVersioner, MetadataBasicVersioner and SingleFile-

BasicVersioner are all affected by the Feature Envy code anomaly. This ag-

glomeration is not isolated from other classes in the system. The Versioner ag-

glomeration contains relationships with surrounding classes. Versioner is an in-

terface, which provides services to three classes: XmlRpcFileManager, XmlRp-

cFileManagerClient and GenericFileManagerObjectFactory. In addition, the

Versioner hierarchy depends on the following surrounding classes: Metadata,

Product and VersioningUtils. When diagnosing design problems, it is import-

ant for a programmer to know how each agglomeration relates to other elements

in the system. These external relationships provide programmers with concrete

information to: (i) identify non-anomalous classes that may be indirectly con-

tributing to the design problem, (ii) plan how to remove a design problem with

a minimum impact on the system, and (iii) identify non-anomalous classes that

may also be changed to remove a design problem.

3.2.2
History Information

History information consists of the change history of the agglomeration

as extracted from previous versions (if any) of the program under analysis.

The agglomeration meta model represents history information through two

elements: History and Version. According to Figure 3.2, each agglomeration

has one and only one history. The history of an agglomeration is composed

by one or multiple versions. Finally, each version represents the status of

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 36

an agglomeration in that version of the program. The minimum number of

versions for an agglomeration history is one, which is the current version of

the agglomeration. Otherwise, if there is no previous version of the program

under analysis, the agglomeration does not have a history yet.

As an example of history information, let us consider the source code of

version 10 from system S, where it is possible to analyze the history information

of various agglomerations that emerged and evolved in previous versions (i.e.,

9, 8, 7... 1) of S. This information can be extracted from a control version

system, or some other system that stores all versions of the system. Whenever

information about multiple versions is available, the synthesis process is able

to combine information collected from different versions to help programmers

to reason about design problems. Using history information, a programmer is

able to identify different patterns of change in an agglomeration. We currently

identify four general history patterns, which are described below.

Growing Agglomeration. Using history information a programmer may be

able to identify agglomerations that are expanding along the system evolution.

That is, agglomerations that accumulate more anomalies as the system evolves.

This kind of agglomeration is named as Growing Agglomeration. The identi-

fication of an expanding agglomeration may be beneficial to the diagnosis of

design problems. For example, consider a hypothetical system S that persists

information using different mechanisms (database, raw file, memory, etc). Con-

sider also that an abstract class A was created for representing the persistence

mechanisms. That is, A defines the interface and the common operations that

each persistence mechanism should implement. Finally, consider that different

mechanisms were introduced in different versions of system S. The existence

of code anomalies in A could cause (i.e., propagate) the insertion of anom-

alies in subclasses implementing new persistence mechanisms. In this scenario,

the analysis of history information would help programmers in identifying a

growing agglomeration around the abstract class A, which in turn indicates a

possible design problem.

Shrinking Agglomeration. History information also allows programmers to

identify agglomerations that are shrinking along a system’s evolution; that

is, agglomerations that progressively have less anomalies at each new version.

We name this kind of agglomeration as Shrinking Agglomeration. A shrinking

agglomeration may indicate, for instance, that a design problem was identified

but not fully removed. A programmer without proper assistance may miss

some elements that contribute to the design problem. Therefore, using history

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 37

information about shrinking agglomerations a programmer may be able to

identify and refactor these missing elements, thereby fully removing the

associated design problem.

Idle Agglomeration. History information is also useful to identify those

agglomerations that almost never change during the evolution of a system.

This kind of agglomeration is named as Idle Agglomeration. Although this

information may look like irrelevant, this may also be helpful to programmers.

First, this may indicate that the classes in the agglomeration are so hard to

change that very few changes were made during the system’s evolution. This

would reinforce the need of applying refactorings in the anomalous elements,

aiming to improve their maintainability. Last, an idle agglomeration may

also contain anomalous elements that hardly ever must be changed. This

type of agglomeration may also be the case of stable implementations, whose

requirements never change. In this situation, unless the anomalous elements

are propagating anomalies to their dependents, it would not be recommended

to refactor the agglomeration. A refactoring would represent an useless effort,

since that code probably will never change.

Waving Agglomeration. The three previous kinds of agglomeration history

represent persistent changing behaviors. In other words, they represent beha-

viors (grow, shrink or idle) that repeat along the analyzed versions of a system.

However, during the evolution of a system, the various patterns may occur at

different versions of the same agglomeration. In a situation like this, we name

it a Waving Agglomeration. This kind of agglomeration may lead to varied

conclusions, depending on the combination of patterns manifesting along the

agglomeration history. For example, in a system with 20 versions, this may be

the case that in the first 10 versions an agglomeration is idle. However, in the

subsequent versions this agglomeration starts to grow. Using this information,

a programmer may infer that a design problem was exacerbated after version

10 (albeit introduced earlier), which is making the agglomeration to grow.

As described by the changing patterns above, the history of an agglomer-

ation may be the source of valuable information. A programmer might benefit

in different ways from analyzing th changing patterns of agglomerations. For

instance, history information also helps to reveal the moment in which a design

problem arose. A design problem may be either congenital or evolutionary, de-

pending on the moment it was “born”. A congenital design problem arises when

the system was originally designed, i.e., it is present in the “first” design of

the system. On the other hand, an evolutionary design problem arises through

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 38

changes made along the system evolution. The introduction of such evolution-

ary design problems may occur (i) gradually, caused by small changes or (ii)

abruptly, caused by a big change.

3.3
Topologies of Code-anomaly Agglomerations

As described in the sections above, SCA may use different strategies

to search for agglomerations. Each strategy is defined by an agglomeration

topology. Since a topology defines which relationships should be used to group

code anomalies, it is natural to classify agglomerations according to their

corresponding topologies. Therefore, this section presents a list of supported

topologies. This list was defined based on characteristics of well-known design

problems (Garcia et al. 2009)(Martin 2002). For example, the cross-component

topology (presented below) was defined based on design problems that occur

in the communication between components (e.g., Fat Interface). This set of

topologies is not exhaustive since other topologies may be defined. In fact, one

of the desirable characteristics of a synthesis technique is to allow the use of

flexible strategies, according to the user’s need. Therefore, other topologies will

certainly be defined in upcoming studies.

3.3.1
Intra-component Topology

Intra-component topology defines agglomerations of code anomalies that

occur inside a single component. Agglomerations that fall into this topology

comprise code elements that are located within a single design component

and are composed of at least two inter-related anomalous code elements. For

example, supposing a package has two classes C1 and C2, and each class has

one method M1 and M2, respectively. Classes C1 and C2 are related if C1 is

referenced within the code of C2, or vice versa. The methods M1 and M2 are

related if M1 calls M2, or vice versa. Finally, two code elements, C1 and C2,

or M1 and M2, form a intra-component agglomeration if they are related and

are affected by the same type of anomaly. Please note that the inheritance

relationship is not considered by this topology, because it characterizes the

occurrence of hierarchical agglomerations (Section 3.3.4).

Intra-component agglomerations are useful to identify poorly designed

components. The reason is that a number of code elements suffering from code

anomalies may suggest a problem in the component’s design. This usually

occurs when the system’s design causes the recurring introduction of anomalies

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 39

Figure 3.5: Abstract Representation of Intra-component Agglomerations

in a component’s implementation. Therefore, anomalies in the individual

elements can only be fixed after fixing the system’s design.

The formal definition for intra-component agglomerations is the follow-

ing: given a set of code anomaly instances S composed by anomalies I1 to

In, a component O, which contains classes C1 to Cn, and a threshold T. We

consider there is a code-anomaly agglomeration in component O if at least T

+ 1 code anomaly instances (from S) affect inter-related classes inside O.

To better understand this topology, consider Figure 3.5. This figure

depicts an abstract representation of an intra-component agglomeration. As

described in the figure’s legend, a dashed line represents the agglomeration.

The dashed line is around the agglomeration’s elements: component, class and

code anomalies. The component is represented by a rectangle, the classes are

represented by squares, and the code anomalies are represented by ellipses. As

illustrated by the figure, in agglomerations of this topology all anomalies must

occur inside a single component.

Concrete Example. As an example of intra-component agglomeration, con-

sider again the diagram of OODT in Figure 3.3. This diagram presents a partial

view of the webgrid component. This figure shows two anomaly instances, Di-

vergent Change in the Server.createHandler method and Long Method in the

Configuration.parse method. These two anomalous methods form an intra-

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 40

component agglomeration because (i) they are enclosed by the same com-

ponent, and (ii) they are inter-related through a composition relationship. As

already discussed, this agglomeration represents a Concern Mixing problem.

3.3.2
Cross-component Topology

Cross-component topology defines agglomerations of code anomalies that

cross the boundaries between different components. An agglomeration of this

topology groups code anomalies that occur in inter-related code elements of

different components. Agglomerations of this topology are useful to identify

design problems that occur in the frontiers between components. That is,

design problems related to the communication between components. An ex-

ample of this situation is the Overused Interface design problem. This problem

occurs when the public interface of a component is used by several external

components. This problem often represents an undesired situation because an

overused interface usually provides diverse unrelated services, which make the

interface difficult to use and expensive to maintain.

The formal definition of cross-component agglomeration is the following:

given a set of components S, where the components contain classes C1 to

Cn, and a threshold T. We consider there is a cross-component agglomeration

involving components of S if at least an anomalous class Cx of a Component

O from S is related to at least T + 1 anomalous classes of other components

from S. The relationships can be either dependencies of C to other classes, or

dependencies from other classes to C.

Figure 3.6 depicts an abstract representation of a cross-component ag-

glomeration. Class C1 is affected by code anomaly instance I3. Moreover, C1

is related to other three anomalous classes C2, C3 and C4, which are affected

by anomaly instances I2, I1 and I4, respectively. Note that classes C2 to

C4 are not located in the same C1’s component, thus characterizing a cross-

component agglomeration.

Concrete Example. As an example of cross-component agglomeration, con-

sider the OODT diagram in Figure 3.7. This diagram presents a partial view

of four components from OODT: metadata, crawler, filemgr and pushpull. The

code anomalies identified in the program elements are represented by initials

within circles and described in the legend. The metadata component encloses,

among others, an anomalous code element (Metadata), which is “used” by

three external anomalous code elements (ProductCrawler, RemoteFile and Xm-

lRpcFileManager). As the anomalous code elements are enclosed by different

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 41

Figure 3.6: Abstract model for Cross-component Agglomerations

components, they form an agglomeration that crosses the component boundar-

ies. In this example there is only one agglomeration, which has four anomalous

code elements (i.e., ProductCrawler, Metadata, RemoteFile and XmlRpcFile-

Manager).

3.3.3
Concern-based Topology

This topology defines agglomerations composed by anomalous code ele-

ments located in the same component that implements diverse concerns. The

main advantage of concern-based agglomerations is that they reveal anomal-

ous code elements that are overloaded with concerns. In most of the cases, this

is caused by poor modularization of those concerns, which is a design prob-

lem by itself. Nevertheless, the overload of concerns also contributes to the

introduction of various other types of design problem. As a result, concern-

based agglomerations are helpful to the identification of varied types of design

problem.

Searching Algorithm. As concern-based topology is the most com-

plex one, we will define it in terms of its searching algorithm. Let us consider

the high-level pseudo-code of the concern-based topology, presented in Al-

gorithm 1. This algorithm uses five inputs: (1) a set of components co, (2)

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 42

metadata

filemgr

crawler

pushpull

Metadata

Long Method

Legend

Shotgun Surgery

Divergent Change

XmlRpcFileManager

ProductCrawler

RemoteFile

God Class

Design Component

GC

LMDC

SS

DC SS GCLM

DC SS LM

DC SS LM

DC LM

Figure 3.7: Example of cross-component agglomeration

a threshold for the minimum number of concerns concernThreshold, (3) a

threshold for the minimum agglomeration’s size agglomerationThreshold, (4) a

threshold for identifying weakly-dedicated components, named weakThreshold,

and (5) a threshold for identifying strongly-dedicated components, named

strongThreshold. In this context, a component Cp is weakly-dedicated to a

concern Cn if Cn is not the main concern of Cp. That is, although Cp imple-

ments Cn, the predominant concern of Cp is not Cn. Conversely, a component

Cp is strongly-dedicated to a concern Cn if Cn is the main concern of Cp.

As exposed by Algorithm 1, concern-based topology searches for two

types of agglomeration. The first type is related to anomalous components

overloaded with the assignment of multiple concerns (lines 3 to 15). In order

to identify this type of agglomeration, the algorithm inspects all components

in the system (lines 4 to 15), searching for anomalous elements that have a

number of concerns greater than the concernThreshold (lines 7 to 11). For

each component, all the anomalous elements that satisfy the aforementioned

condition are included in an list of agglomeration candidates. After inspecting

the component, if the agglomeration candidate has a number of anomalies

higher than the agglomerationThreshold, then this agglomeration is included

in the final results, i.e., in the list of actual agglomerations. That is, the

agglomeration candidate becomes an actual agglomeration.

The second type of concern-based agglomeration is related to scattered

anomalous elements related to the same cross-cutting concern (lines 17 to

29). In this case, the algorithm uses two functions to verify if a concern: (i) is

modularized in one or more components (strongly-dedicated components), and

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 43

(ii) is partially scattered in the implementation of other components (weakly-

dedicated components). The combination of these two conditions indicate that

a concern cross-cuts the implementation of other concerns. The anomalous

code elements contributing to a cross-cutting concern are grouped into an

agglomeration candidate (lines 22 to 25). If the agglomeration candidate

has a number of anomalies higher than the agglomerationThreshold, then

this agglomeration is included in the results and confirmed as an actual

agglomeration.

Algorithm 1 Searching strategy for concern-based agglomerations

1: let results = {}
2:

3: //Searching for overload of concerns
4: for each design component co in the program do
5: anomalous = getAnomalousElementsOfCompoent(co)
6: let agglomeration = {}
7: for for each ae in anomalous do
8: if size(ae.getConcerns()) > concernThreshold then
9: agglomeration.add(ae)
10: end if
11: end for
12: if size(agglomeration.getAnomalies()) > agglomerationThreshold

then
13: results.add(agglomeration)
14: end if
15: end for
16:

17: //Searching for cross-cutting concerns
18: for each design concern con in the program do
19: W = weakDedicatedComponents(con, weakThreshold)
20: S = strongDedicatedComponents(con, strongThreshold)
21: let agglomeration = {}
22: if size(W) > 0 and size(S) > 0 then
23: ae = getAnomalousElementsImplementingConcern(W, con)
24: agglomeration.addAll(ae)
25: end if
26: if size(agglomeration) > agglomerationThreshold then
27: results.add(agglomeration)
28: end if
29: end for
30: return results

In order to gather a complementary explanation, consider Figure 3.8.

This figure provides an abstract representation of a concern-based agglom-

eration. Each class in the component implements a number of concerns. All

classes implement C01, which is the main concern of the component. However,

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 44

Figure 3.8: Abstract representation for Concern-based Agglomerations

each of them implements at least one additional concern. For example, class

C1 implements two additional concerns, which are C03 and C04. In a nutshell,

the agglomeration of Figure 3.8 is composed by 4 code anomalies that affect

4 classes. Each anomalous class implements at least two concerns, and all of

them are in the same component.

Concrete Example. The Mobile Media example, described in Section 3.1.2,

is an example of concern-based agglomeration. As already explained, the

agglomeration involving classes from the Controller and View components

provided fundamental information for the identification of a Scattered Concern

problem.

Figure 3.9 depicts another example of concern-based agglomeration. This

figure shows a partial view of the Health Watcher design. Characters represent

the concerns addressed by the code elements of each component. Their respect-

ive names are described in the legend. We consider that the anomalous code

elements of Business (HealthWatcherFacade and RMIFacadeAdapter) form a

concern-based agglomeration. The explanation is that the Business component

is responsible for realizing several concerns, such as Persistence and Exception

Handling, which are not related to the main concern Business. Hence, the

anomalous code elements of Business form an agglomeration overloaded with

multiple concerns.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 45

C D E P

HealthWatcherFacade

Component View

Class View
RMIFacadeAdapter

Legend

Shotgun Surgery God Class

Data Business

C

D E

P

GUI

Concurrency

Distribution

Persistence

Exception Handling

Expected Flow

B Business

B

A Data

A P

G GUI

G

SS

SS

GC

GC GC

Unexpected Flow

Design Component

Figure 3.9: Concern-based agglomeration in the Health Watcher system

3.3.4
Hierarchical Topology

Hierarchical topology defines agglomerations of code anomaly that are

located in classes of the same hierarchy. This topology is more useful in systems

with intensive use of inheritance relationships and interface implementations,

such as software frameworks and libraries. Hierarchical agglomerations often

help programmers to identify design problems introduced in the root of hier-

archies. For example, a problematic interface may induce all of its implement-

ations to have the same type of anomaly. Using hierarchical agglomerations,

this type of problem can be more easily spotted as long as there is a first

implementation of the interface.

In the definition of this topology, an hierarchy may be composed by two

types of relationship: (1) class inheritance or (2) interface implementation.

Every agglomeration of this topology has a single root and its descendants. To

be considered an hierarchical agglomeration, multiple elements of the hierarchy

must be affected by the same type of anomaly. The rationale behind this

constraint is that those anomalies should be part of the same design problem.

Therefore, if they are of the same type, they are more likely to be coherently

part of the same design problem. There is also a higher likelihood of the

anomalies in the descendants being propagated by the anomaly in the hierarchy

root.

The formal definition of hierarchical agglomerations is the following:

given a set of code anomaly instances S composed by anomalies I1 to In, a

hierarchy H, which contains classes C1 to Cn, and a threshold T. We consider

there is a code-anomaly agglomeration in hierarchy H if at least T + 1 code

anomaly instances (from S) are of the same type and affect classes of H.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 46

Figure 3.10: Abstract model for Hierarchical Agglomerations

To better understand this topology, consider Figure 3.10. This figure de-

picts an abstract representation of a hierarchical agglomeration. The hierarchy

is composed by four classes (C1 to C4), where (i) C1 is the hierarchy’s root

and (ii) classes C2, C3 and C4 are subclasses of C1. As illustrated by the

figure, in agglomerations of this topology all anomalies must occur in the same

hierarchy and all of them must pertain to the same type.

Concrete Example. An example of this agglomeration topology can be found

in the Versioner hierarchy (Figure 3.1). As all the classes of Versioner are

affected by the same anomaly – which is Feature Envy, they are part of a

hierarchical agglomeration.

3.3.5
Intra-method Topology

Even though a method is a fine-grained program element, it might be

the source of multiple code anomalies. Therefore, the intra-method topology

defines agglomerations of code anomalies that are located in single methods.

Although intra-method agglomerations are very simple and confined to a tiny

program behavior, they may be useful for the identification of design problems.

Some design problems, such as Ambiguous Interface, can only be identified

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 47

Figure 3.11: Abstract model for Intra-method Agglomerations

by analyzing the interface implementation. The Ambiguous Interface problem

is usually reflected in the source code as nested conditions and multiple

dependencies. These symptoms can only be identified by analyzing specific

implementations of the interface. Therefore, for problems like that, intra-

method agglomerations can be good indicators.

This topology is formally defined as follow. Given a set of code anomaly

instances S composed by anomalies I1 to In, a method M and a threshold T.

We consider there is a code-anomaly agglomeration in M if (i) at least T + 1

anomaly instances from S affect method M, and (ii) all the anomaly instances

affecting method M are singular. That is, method M is affected by at least T

+ 1 different types of anomaly.

To better understand the nature of this topology, consider Figure 3.11.

This figure provides an abstract representation of an intra-method agglomera-

tion. This agglomeration affects method M and is composed by three anomaly

instances – i.e., I1, I2 and IN.

Concrete Example. Figure 3.12 shows an example of intra-method agglom-

eration extracted from the OODT system. This agglomeration occurs in the

fromWorkflowInstance method that is implemented in the WorkflowProcessor-

Queue class. This method is affected by two code anomaly instances: Brain

Method and Intensive Coupling. This program element is the source of a Brain

Method because fromWorkflowInstance performs several operations related

to pre-conditions, tasks and pos-conditions. All these operations makes the

method difficult to read and consequently, difficult to maintain. Moreover, this

suffers from Intensive Coupling because it is tightly coupled with few classes,

namely WorkflowInstance, WorkflowProcessor, WorkflowCondition and Work-

flowTask.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 48

private WorkflowLifecycle getLifeCycle(Workflow

workflow) {

 return

 lifecycle.getLifecycleForWorkflow(workflow) != null

 ? lifecycle.getLifecycleForWorkflow(workflow)

 : lifecycle.getDefaultLifecycle();

}

private WorkflowProcessor fromWorkflowInstance

(WorkflowInstance inst) throws EngineException {

 WorkflowProcessor processor = null;

 if (processorCache.containsKey(inst.getId())){

 return processorCache.get(inst.getId());

 } else {

 ...

 }

 ...

 if (isCompositeProcessor(inst)) {

 for(WorkflowCondition cond : inst

 .getParentChildWorkflow()

 .getPreConditions()) {

 ...

 }

 for (WorkflowTask task : inst

 .getParentChildWorkflow()

 .getTasks()) {

 ...

 }

 ...

 for (WorkflowCondition cond : inst

 .getParentChildWorkflow()

 .getGraph().getTask()

 .getPostConditions()) {

...

WorkflowProcessorQueue

+ getProcessors()

+ persist(inst)

- fromWorkflowInstance(inst)

- getLifeCycle(workflow)

...

public synchronized List<WorkflowProcessor> getProcessors(){

 WorkflowInstancePage page = null;

 try {

 page = repo.getPagedWorkflows(1);

 } catch (Exception e) {...}

 ...

 for (WorkflowInstance inst : (List<WorkflowInstance>)

 (List<?>) page.getPageWorkflows()){

 ...

Feature Envy

Dispersed Coupling Brain Method and Intensive Coupling

Figure 3.12: Intra-class and Intra-method agglomerations in the WorkflowPro-
cessorQueue class

3.3.6
Intra-class Topology

Just like methods, classes may also be affected by diverse code anomalies.

Therefore, a topology that characterizes this type of agglomeration has been

defined. This topology is named as intra-class topology. This topology is useful

to identify classes with problematic designs. Moreover, this topology allows

programmers to perform bottom-up analysis, going from the class’ design until

the system’s design.

Intra-class is formally defined as follow. Given a set of code anomaly

instances S composed by anomalies I1 to In, a class C, which contains

methods M1 to Mn, and a threshold T. We consider there is a code-anomaly

agglomeration in C if at least T + 1 anomaly instances (i) directly affect class

C or (ii) affect two or more methods of C. In this case, an anomaly instance Ix

directly affects a class Cx if the anomaly occurs due to the internal structure

of Cx, which is characterized by its attributes and methods. In other words, a

class contains an intra-class agglomeration when the sum of its anomalies and

its methods’ anomalies is higher than the threshold.

To better understand this topology, consider Figure 3.13. This figure

provides an abstract representation of an intra-class agglomeration. This

agglomeration contains three anomaly instances, which affect a class with

two methods. As it is possible to observe, not every anomaly instance in the

agglomeration directly affects the class. Instead, two of them (I2 and IN)

affect methods in the class.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 49

Figure 3.13: Abstract model for Intra-class Agglomerations

Concrete Example. Figure 3.12 shows an example of intra-class agglomer-

ation extracted from the OODT system. This agglomeration occurs in the

WorkflowProcessorQueue class and is composed by four code anomaly in-

stances: Feature Envy in the getLifeCycle method, Dispersed Coupling in the

getProcessors method, Brain Method and Intensive Coupling in the fromWork-

flowInstance method.

3.4
Implementation

This section provides an overview of Organic: a prototype tool intended

to support the systematic synthesis of code anomalies (Oizumi & Garcia 2015).

Organic was designed to help programmers in identifying design problems in

the source code of Java (Oracle 2015) systems, where design documentation

is scare, incomplete or obsolete. Moreover, this tool can also be used by

researchers to study the relationships of code-anomaly agglomerations and

design degradation. Chapter 4 will describe one of these studies performed

with this intent. The tool is implemented as a plug-in for the Eclipse platform

(Ecl 2015). In this tool, a number of features collaborate with each other to

satisfy the requirements – which are presented in the beginning of this chapter –

for a synthesis technique. Next, we present an overview of the features provided

by the tool.

Agglomerations View. The Agglomerations View provides the features of

the synthesis technique required to support the identification of design prob-

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 50

Figure 3.14: Agglomerations View

Figure 3.15: Expanded Tree into the Agglomerations View

lems. Figure 3.14 shows a snapshot of the Agglomerations View. As it can

be observed, this view is separated in two parts: the first part is called Ag-

glomerations and it is shown on the left side; the second part is called Details

and it is shown on the right side. The Agglomerations part shows the ag-

glomerations found in one or more projects according to their category. In

Figure 3.14, for instance, this view is showing all the agglomerations found in

the Health Watcher project. When clicking on one of the agglomeration cat-

egories, all the detected agglomerations of that category are displayed. Each

agglomeration is displayed with a meaningful identifier. For example, there

are three intra-method agglomerations in Figure 3.15. The identifier of each

intra-method agglomeration is the name of the affected method.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 51

Figure 3.16: Description of an agglomeration

Description. The Description tab shows a summary of all relevant inform-

ation for the selected agglomeration. The description is composed by the fol-

lowing information:

– Agglomeration description. A brief textual description of the agglom-

eration. This description usually includes the type of agglomeration and

the main elements affected by the agglomeration. However, additional in-

formation may be provided depending on the type of agglomeration. For

example, concern-based agglomerations also provide information about

their concerns.

– Number of Anomalies. The number of code anomalies that are

members of the selected agglomeration.

– Types of Anomalies. A brief description of the types of anomalies

that are members of the selected agglomeration. Note that, depending

on the agglomeration category, an agglomeration may have more than

one anomaly of the same type.

Figure 3.16 shows an example of description for a given agglomeration.

The selected agglomeration pertains to the intra-method type and affects

the UpdateComplaintSearch.execute method. This agglomeration contains 2

anomalies, which are Dispersed Coupling and Brain Method.

References. The References tab shows the references to each code element

affected by the selected agglomeration. In the example of Figure 3.17 the selec-

ted agglomeration contains only one code element, which is UpdateComplaint-

Search.execute. This code element is referenced by two code elements: HWSer-

vlet.retry and HWServlet.handleRequest. These two references are shown in the

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 52

Figure 3.17: References of an agglomeration

Figure 3.18: Graph of an agglomeration

References tab. If more code elements were affected by the agglomeration, this

tab would show the references to all of them.

Graph. The Graph tab shows a graphical representation of the selected

agglomeration. This representation is not intended to provide a dependency

graph of the agglomeration’s code elements. Instead, it is intended to provide

an abstract representation of the agglomeration, aiming to help the analysis

and understanding of the agglomeration. Figure 3.18 shows an example of

graph for an intra-method agglomeration. In this graph, code anomalies are

represented by nodes labeled with the anomaly type and the affected method

is represented by a node labeled with the method’s name. As shown in

Figure 3.19, additional information appears when the mouse pointer is on one

of the nodes.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 53

Figure 3.19: Information displayed in an agglomeration’s graph

Figure 3.20: History information about an agglomeration

History. The History tab shows the history of the selected agglomeration

(see Section 3.1 for details). The history of a given agglomeration may have

one or more versions. Each version shows the anomalies that were member of

the agglomeration. In Figure 3.20, for example, there are two versions: version

1 and version 5. In version 1, the agglomeration was composed by only one

anomaly (Refused Parent Bequest in the FoodComplaint class). On the other

hand, the same agglomeration was composed by three anomalies (Refused

Parent Bequest in FoodComplaint, AnimalComplaint and SpecialComplaint)

in the fifth version. Using this resource, it is possible to identify agglomerations

that changed along the system’s evolution. The programmer can navigate

through the agglomeration history in order to identify the four history patterns

(Section 3.2.2).

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 54

3.5
Limitations

The effective use of this technique depends on the experience and

knowledge of the programmer. Different topologies may be used to identify the

same design problem. Moreover, each topology may indicate different types of

design problem. Therefore, a programmer that uses this technique must analyze

the provided information and judge if there is (or not) a design problem.

Nevertheless, to the extent of our knowledge, there is no technique capable

of revealing a significant number of design problems without an updated

design documentation. Existing techniques reveal only local problems, such as

individual code anomalies, or require much more information to detect design

problems. However, in order to mitigate the aforementioned limitations, we

have performed two empirical studies (Chapters 4 and 5) in order to observe

the usefulness of specific agglomeration topologies. The results of our studies

shed light on whether and how our synthesis technique could be effectively

used by programmers.

Another limitation of this technique is related to the detection of code

anomalies. Since the proposed approach is based on code anomalies, its

success ends up somehow depending on detection strategies for individual

code anomalies. However, recent studies suggest that there are no universal

metric’s threshold that apply to every software project, since software metric

values usually follow heavy-tailed distributions (Louridas, Spinellis & Vlachos

2008)(Baxter, Frean, Noble, Rickerby, Smith, Visser, Melton & Tempero 2006).

As a result, the effectiveness of the synthesis technique depends on the

proper configuration of detection strategies and their respective thresholds.

The delegation of the configuration of thresholds for programmers is usually

undesired. Programmers can also use methods for selecting specific thresholds

tailored to their particular software projects (Vale, Albuquerque, Figueiredo

& Garcia 2015). The reason is that even experienced programmers may not

have the necessary knowledge for this task. In a future work, we also intend

to integrate in our tool a technique for automatically defining thresholds for

specific projects.

However, after all, our empirical study (Chapter 4) revealed that the use-

fulness of our synthesis technique has very limited dependency on the accuracy

of the detection strategies. We found that many detected agglomerations are

composed of four anomalies or more. Therefore, if some of these anomalies

represent false positives, the agglomeration is still useful as long as the other

anomalies represent true positives. The programmer can still reflect upon the

group of anomalies and infer which of them contribute together to the realiz-

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 3. Synthesis of Code Anomalies 55

ation of a design problem. In this process, they can also learn with the false

positives and improve the respective strategies for detecting those types of

code anomalies.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

4
Identifying Design Problems with Agglomerations: A Multi-
Case Study

Design problems are certain software structures that indicate the viola-

tion of intended design rules or general modularity principles (Suryanarayana,

Samarthyam & Sharmar 2014). Every software system suffers from design prob-

lems, introduced either during original system development or along software

evolution. They are not necessarily faulty or errant, but they negatively impact

the design quality of the software. Examples of design problems are Fat Inter-

face (Garcia et al. 2009), Overused Interface (Garcia et al. 2009) and Scattered

Concern (Garcia et al. 2009) (Chapter 2).

These problems may have different degrees of severity, but all of them

must be detected and removed in the source code somehow. In fact, software

systems have been discontinued (MacCormack et al. 2006) or have had to

be fundamentally reengineered (Godfrey & Lee 2000) (van Gurp & Bosch

2002)(Schach, Jin, Wright, Heller & Offutt 2002) when design problems

were not detected and removed soon after their introduction. Instead, these

problems were allowed to persist in a system and to be compounded by other

design problems introduced later. The principal difficulty is because frequently

a design problem is not localized in a single code element (Moha et al. 2010),

instead it is scattered into different code elements of the implementation (Moha

et al. 2010).

In order to deal with the scattering of design problems, programmers have

tried to detect and to reason about relationships (Abbes et al. 2011)(Macia

2013)(Moha et al. 2010)(Sjobert et al. 2013)(Yamashita & Moonen 2013) of

code-level anomalies – popularly known as code smells. In fact, a single code

anomaly only represents a possible candidate to identify only one part of a

design problem (Yamashita & Moonen 2013). Indeed, most code anomalies

are poor indicators of design problems when analyzed individually. (Macia et

al. 2012b). Even worse, several design problems – such as Fat Interface and

scattered Concern – are difficult to find since programmers have to locate and

inspect multiple anomalous code elements that are part of the problem. For

example, when a programmer is identifying an Overused Interface, he needs

to reason about the interface and all the classes that implement the interface.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 4. Identifying Design Problems with Agglomerations: A
Multi-Case Study 57

Furthermore, for a programmer is hard or even impossible to identify which

group of code anomalies he should focus on. Even for small software systems,

there are hundreds of code anomalies (Macia et al. 2012c) and thousands of

possible relationships to examine. The key challenge is to understand the

relationships between code anomalies that are frequent indicators of critical

design problems in an evolving program.

In Chapter 3, we proposed the SCA (Synthesis of Code Anomalies) tech-

nique. This technique searches for code-anomaly agglomerations and summar-

izes information about them. In this context, an agglomeration is a coherent

group of code anomalies that may represent a design problem. In order to

search for agglomerations, SCA considers varied forms of relationship between

anomalies. Despite being a promising technique, there is a lack of evidence on

the effectiveness of SCA to reveal design problems.

There are few studies investigating questions related to groups of code

anomalies (Abbes et al. 2011)(Macia 2013)(Moha et al. 2010)(Sjobert et

al. 2013)(Yamashita & Moonen 2013)(Gı̂rba, Ducasse, Kuhn, Marinescu &

Daniel 2007). Most of the resulting techniques assume that relationships in

the source code (e.g., type reference, method call, etc) are sufficient to reveal

design problems (Abbes et al. 2011)(Macia 2013)(Moha et al. 2010)(Sjobert et

al. 2013). Other techniques rely on groups of anomalous code elements derived

from code change history (i.e., co-changes) (Gı̂rba et al. 2007). In addition,

each of these techniques is often focused on a few specific design problems.

In addition, there are limited (to no) empirical observations about how often

these (or other) relationships help to spot recurring design problems faced by

programmers. As a result, programmers cannot know which code anomalies

relationships are effective at revealing design problems and hence should be the

focus of their attention. This task becomes harder in early program versions as

there is limited information about the harmfulness of syntactic and co-change

relationships of code anomalies. Other recent studies have tried to characterize

interactions of code anomalies (e.g., (Yamashita & Moonen 2013)), but again,

they provided no empirical evidence of their likelihood of indicating design

problems.

Therefore, this chapter presents a multi-case study performing several

analyses regarding code-anomaly agglomerations and design problems (Sec-

tion 4.1). We have used SCA in order to analyze seven systems of different

sizes (8 KSLOC to 129 KSLOC) and from different domains. Our analysis in-

volved a total of 5418 code anomalies and 2224 agglomerations. We investigated

the circumstances under which agglomerations are related (or not related) to

design problems. The analyzed circumstances involve: (i) the statistical signific-

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 4. Identifying Design Problems with Agglomerations: A
Multi-Case Study 58

ance of the relationship between agglomeration types and design problems, (ii)

whether the specific types of agglomerations relate to specific types of design

problems, and (iii) to what extent agglomerations manifest themselves at dif-

ferent stages of a system’s lifetime, i.e., in early vs. late versions of a system.

The aforementioned analysis resulted in several observations (Section 4.2):

1. In most of the target systems, agglomerations were at least twice better

than individual code anomalies to indicate the presence of design prob-

lems; in some systems, the superiority of agglomerations was even more

than five times better.

2. Overall, intra-component, cross-component and hierarchical agglomer-

ations cannot be considered very strong indicators of design problems.

They were usually not effective indicators for most of the individual types

of design problems. Their statistical significance was not high. Neverthe-

less, considering all the analyzed systems, approximately 50% instances

of these types of agglomerations were related to design problems. This

accuracy is much higher than the accuracy of individual code anomalies.

3. Design problems were often much more precisely indicated by concern-

based agglomerations. In general, the accuracy was approximately 80%

when considering all the design problems and systems analyzed in our

study.

4. Analyzing history co-changes in the affected program elements could

not be efficient to reveal the relationships of code anomalies and design

problems. The reason is that many problems were “congenital”, i.e.,

they were already introduced in the system’s initial version. In addition,

there were many changes affecting pairs of code anomalies scattered

throughout a program. This means that programmers cannot know which

of the several co-changes in the corresponding anomalous elements would

help them to reveal design problems. Even worse, some co-changes might

occur in later versions of a software project, but it is usually too late

to identify and remove a design problem. Many clients already depend

on the inter-related anomalous code elements that realize the design

problem.

5. Based on the aforementioned findings, we can conclude that SCA provide

effective means to study the relationship of code anomaly agglomerations

and design problems. In addition, SCA-supported agglomerations seem

to provide more effective means (than individual code anomalies) to assist

locating a wide range of design problems in the source code.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 4. Identifying Design Problems with Agglomerations: A
Multi-Case Study 59

The remainder of this chapter is organized as follows. Section 4.1 de-

scribes the settings of our study, including the research questions to the pro-

cedure for data collection and analysis. Section 4.2 presents the main results

of our study. Section 4.3 outlines the threats to validity of this work. Finally,

Section 4.4 summarizes the concluding remarks.

4.1
Study Definition

In this section, we present the evaluation foundations of this study.

Section 4.1.1 presents the topologies of code-anomaly agglomerations used in

the study. Section 4.1.2 describes the research questions that this study aims

to answer. Section 4.1.3 describes the target systems. Finally, Section 4.1.4

addresses the procedure for data collection and analysis.

4.1.1
Agglomeration Topologies

The design problems represent direct symptoms of design degrada-

tion (Garcia et al. 2009) and should be removed as early as possible in

a software project. However, some studies (Abbes et al. 2011)(Macia et

al. 2012b)(Macia et al. 2012c)(Macia et al. 2012a)(Moha et al. 2010)(Olbrich

et al. 2010)(Yamashita & Moonen 2013) revealed the individual analysis of

code anomalies is not enough to identify design problems. This finding rep-

resents a challenge for programmers because they often need to spot design

problems based on source code. Moreover, spotting design problems becomes

harder because of the lack of up-to-date design documents (Macia et al. 2012b).

Programmers may identify a design problem in the source code better

when they focus on the relationship between code anomaly than when they

focus on code anomalies individually. Code anomaly agglomeration, i.e., a

group of interrelated code anomalies, can help programmers to spot a design

problem. Therefore, in order to find the best way to interrelate code anomalies,

we applied a experiment to verify which forms of agglomeration are better to

identify design problems.

To achieve our objective we considered four topologies: (i) intra-

component, (ii) cross-component, (iii) hierarchical and (iv) concern-based. In

Table 4.1, we present a brief description of each topology. For detailed descrip-

tions and examples about the topologies, refer to Section 3.3 of Chapter 3.

In this study, we opted for not explicitly evaluating the usefulness of intra-

class and intra-method topologies. The reason is that these two topologies

consider only relationships that would, in theory, be easily spotted by a

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 4. Identifying Design Problems with Agglomerations: A
Multi-Case Study 60

Table 4.1: Agglomeration topologies evaluated in this study
Topology Description

Intra-component
A component that contains two or more inter-related
anomalous classes.

Cross-component
Two or more anomalous classes located in two or more
different components, related through associations,
compositions or references in the source code.

Hierarchical
Two or more classes in a common inheritance tree
(including interface implementation) that are affected by
the same type of anomaly.

Concern-based
Anomalous classes that implement one or more
concerns besides implementing the main concern
of their enclosing component.

programmer. Moreover, both intra-class and intra-method topologies are not

able to directly reveal design problems scattered in different classes and

methods. Nevertheless, we will address the evaluation of these two topologies

in the controlled experiment presented in Chapter 5.

4.1.2
Research Questions

Previous research (Abbes et al. 2011)(Macia et al. 2012c)(Macia et al.

2012b)(Macia et al. 2012a)(Moha et al. 2010)(Olbrich et al. 2010)(Yamashita

& Moonen 2013) revealed that individual code anomalies are not very effective

at detecting design problems. Previous research (Abbes et al. 2011)(Macia

2013)(Moha et al. 2010)(Sjobert et al. 2013) showed that groups of inter-related

code anomalies may help to reveal maintainability problems. However, there is

little knowledge about the relationship between agglomerations and design

problems. Moreover, there is little knowledge about how specific anomaly

relationships can help programmers to identify specific design problems.

Consequently, programmers still do not know how anomaly agglomera-

tions can help them to locate (typically scattered) design problems. Moreover,

design problems need to be revealed in early versions of a program. Otherwise,

it is hard to refactor the source code to remove a design problem. Therefore,

this study aims at expanding the current knowledge about the code-anomaly

agglomerations and design problems. We address three particular aspects as-

sociated with this overall goal:

RQ1 Are design problems reflected in code-anomaly agglomerations more

often than in individual code anomalies?

RQ2 Which agglomeration topologies are best indicators of design problems?

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 4. Identifying Design Problems with Agglomerations: A
Multi-Case Study 61

Table 4.2: Characteristics of the Target Systems
HW MM S1 S2 S3 S4 OODT

Aplication
Type

Web Framework
Software Product

Line
Desktop

Application
Desktop

Application
Desktop

Application
Web Application Middleware

Arquitectural
Design

Layers MVC Client-Server Client-Server Client-Server MVC Components

KSLOC 8 10 122 118 93 116 129

RQ3 What proportion of design problems manifest themselves as agglomera-

tions in early versions of a program?

RQ1 compares the relevance of code-anomaly agglomerations against in-

dividual code anomalies. If agglomerations represent more often design prob-

lems, it means that SCA would be useful for programmers to identify design

problems. Different agglomeration topologies may be more useful than others

to identify and locate design problems in the source code. Hence it is important

to know which agglomeration topologies are constantly related to design prob-

lems in different systems. This was the motivation to define our second research

question. We address RQ2 by investigating whether specific agglomeration to-

pologies are (or not) good indicators of design problems. These aspects enable

us to reveal to what extent the topology of an agglomeration contributes to

the location of design problems in the source code. Someone could speculate

that design problems often emerge when changes started to be continuously

introduced in the source code. However, it might be that some design problems

are “congenital”, i.e., they manifest in the first versions of a program. Then,

RQ3 is aimed at investigating the extent of the congenital design problems

related to code-anomaly agglomerations. If this relation occurs often in early

program versions, it can imply that early detection of design problems can be

improved. We address RQ3 by analyzing the available initial versions of the

analyzed software systems. With this investigation, we aim to understand if

design problems are frequently related to agglomerations when the former are

introduced in a system.

4.1.3
Target Systems

In order to address the three research questions, we analyzed systems

with a wide range of characteristics. We selected systems of different sizes

(8 KSLOC to 129 KSLOC), leveraging different design styles, and spanning

different domains. We studied 7 systems in total, of which 2 are from academic

research labs and 5 are from industry. Table 4.2 summarizes the general

characteristics of each target system.

The first is Health Watcher (HW), a web framework system, aimed at

allowing citizens to register complaints regarding health issues in public insti-

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 4. Identifying Design Problems with Agglomerations: A
Multi-Case Study 62

tutions (Soares, Laureano & Borba 2002). The second is Mobile Media (MM),

an academic software product line to derive applications that manipulate pho-

tos, videos, and music on mobile devices (Young 2005). The next four systems

are proprietary and, due to intellectual-property constraints, we will refer to

them as S1, S2, S3 and S4. The goal of S1 and S2 is to manage activities related

to the production and distribution of oil. S3 manages the trading stock of oil,

while S4 is intended to support the financial market analysis. The last system

is Apache OODT (Object Oriented Data Technology), whose goal is to de-

velop and promote the management and storage of scientific data (Mattmann

et al. 2006). For all the target systems, multiple classes implement each com-

ponent. In OODT, for example, each design component is implemented by an

average of 24 classes.

4.1.4
Procedure for Data Collection and Analysis

In this section, we present how this empirical study was defined and

executed. Here we present the procedures to (1) detect code anomalies and

agglomerations, (2) identify design problems, and (3) analyze the relation of

design problems and agglomerations.

Detecting Code Anomalies and Agglomerations

This task was accomplished using detection strategies (Lanza &

Marinescu 2006) similar to those used in related studies (Section 2.3 of

Chapter 2). Such strategies have proven to be the most effective in other sys-

tems, with precision (percentage of true positives) higher than 80% (Macia

et al. 2012b)(Macia 2013). The process of detection was undertaken with the

assistance of a tool called Organic (Section 3.4 of Chapter 3). Organic was de-

signed to fully support the use of SCA. It uses conventional detection strategies

(Lanza & Marinescu 2006) to detect code anomalies and searches for agglom-

erations using different forms of relationship. The metrics used by the detec-

tion strategies were directly collected by Organic. In this study, we focused

in the anomalies detected by Organic, which are described in Chapter 2. As

the selected anomalies are widely discussed elsewhere, readers may refer to

(Fowler 1999) and (Lanza & Marinescu 2006) for details about each of them.

Organic presents two different outputs. The first is a list of code anomaly

instances identified in the system. The second output is composed by the detec-

ted agglomerations. For this study, we selected four topologies (Section 4.1.1),

according to their characteristics. To the extent of our knowledge, Organic is

the only tool that fully supports the synthesis of code anomalies.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 4. Identifying Design Problems with Agglomerations: A
Multi-Case Study 63

Identifying Design Problems

Given that this task had to be performed manually, we tried to avoid

mistakes by involving designers of the target systems in the whole process.

For all the target systems, the identification of design problems was performed

using the source code and the intended design. For systems without design

documentation, we relied on a suite of design recovery tools (Garcia et al. 2013).

Original designers of the target systems assisted us in all the steps of this task.

The procedure for deriving the list of design problems with designers was the

following: (i) an initial list of design problems was identified using detection

strategies presented in (Macia 2013), (ii) the designers had to confirm, refute

or expand the design problems identified, (iii) the designers provided a brief

explanation to the researcher on the (ir)relevance of the design problem,

and (iv) when we suspected there was still inaccuracies in the confirmed

list of design problems, we asked the designers for further feedback. For the

description of the design problems, please refer to Chapter 2.

Due to the need of human involvement in the study, it means that we

preferred to dedicate much more effort on the reliability of our data set rather

than on just increasing our sample. For Mobile Media, Health Watcher, S1,

S2 and S3, the lists of design problems had been identified in another study

(Macia 2013), which already produced and used this information using the

procedure described above. Despite the fact that Mobile Media and Health

Watcher were built a long time ago, their designers were still available because

one of the authors was somehow involved in those projects. For OODT and

S4, we followed the same procedures that were followed in the other study

(Macia 2013). OODT development started in 1999, however, this was still

being actively developed in 2012-2013, when the list of design problems was

validated with one of the leading designers. The leading designer of OODT’s

development collaborated with us on all the steps of this task. Finally, S4 was

developed by a private medium-sized company, which collaborated with us to

build the list of design problems, following the same procedure followed with

other systems.

Analyzing the Relation of Design Problems and Agglomerations

Aiming to analyze the different agglomeration topologies and how they

are related to design problems, we defined the research questions described in

Section 4.1.2. To answer our research questions, the criteria used for correlating

code-anomaly agglomerations and single code anomalies with design problems

were the following. A code-anomaly agglomeration and a design problem

are related if they co-occur in, at least, one code element. Even though

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 4. Identifying Design Problems with Agglomerations: A
Multi-Case Study 64

both agglomeration and design problem usually involve many elements, in

our definition is sufficient that they co-occur in one element. Similarly, an

individual code anomaly and a design problem are correlated if they occur in

one code element together. We considered this decision appropriate because

there were no previous evidence to base our study on. Therefore, in this

first study we had to analyze the largest set of possible relations between

agglomerations and design problems.

In order to answer research question RQ1, we performed both down-

stream and upstream analyses in all the seven systems. The downstream ana-

lysis is from the perspective of the design, i.e., we analyzed how the design

problems are related to code-anomaly agglomerations and individual code an-

omalies. Conversely, in the upstream analysis we analyzed how agglomerations

and individual code anomalies are related to design problems.

To answer RQ2 we analyzed the relation of each agglomeration topology

with design problems in the target systems. We complemented the answer to

RQ2 by analyzing cases of false negatives. This analysis aimed to understand

why agglomerations failed in some cases. An agglomeration fails to indicate

design problems when its code anomalies are not related to a design problem.

To check the statistical significance of our results, we used Fisher’s exact test

(Fisher 1922). The application of this test was performed with the use of the

R tool (Bloomfield 2014).

Finally, in order to answer RQ3, we analyzed the manifestation of

agglomerations in initial versions of S1, S2, S4 and OODT. Moreover, we

compared the manifestation of agglomerations in two versions - one early

and one late - of Mobile Media and Health Watcher. The goal was to

understand how different types of agglomerations can help programmers to

identify congenital design problems.

4.2
Results and Analysis

This section presents the results and analysis of the study described in

Section 4.1. Section 4.2.1 presents a comparison between individual code an-

omalies and code-anomaly agglomerations. Section 4.2.2 discusses the extent

to which code anomaly relationships (i.e., agglomeration topologies) are in-

dicators of design problems. Finally, Section 4.2.3 discusses the manifestation

of design problems as code-anomaly agglomerations in early system versions.

The findings in this section allow us to understand the value of existing tech-

niques for detecting design problems thorough code change history (Gı̂rba et

al. 2007).

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 4. Identifying Design Problems with Agglomerations: A
Multi-Case Study 65

Table 4.3: Relation of design problems with agglomerations and code anom-
alies. AG = Code-anomaly agglomeration; CA = Individual code anomaly.

System
Downstream Upstream

Design Problem Design Problem
AG CA AG CA

S1 78% 53% 80% 18%
S2 85% 68% 82% 2%
S3 73% 11% 75% 14%
S4 93% 14% 50% 10%
MM 57% 35% 58% 26%
HW 100% 91% 45% 22%
OODT 62% 38% 71% 58%

4.2.1
Comparing anomaly instances vs. agglomerations

This section addresses question RQ1: “Are design problems reflected in

code-anomaly agglomerations more often than in individual code anomalies?”

A previous study has revealed that design problems are related to individual

code anomalies (Macia et al. 2012b). At the same time, many code anomalies

had no relation to design problems (Macia et al. 2012b). Then, the answer

to RQ1 would enable us to understand whether the analysis of code-anomaly

agglomerations may improve the detection of design problems. As mentioned

in Section 4.1.4, we performed the analysis from two perspectives: downstream

and upstream.

Downstream Perspective. The first two columns of Table 4.3 present the

results of the downstream analysis. The first column (AG) presents, for each

system, the proportion of design problems related to agglomerations. The

second column (CA) shows the proportion of design problems related to single

code anomalies. As it can be seen, the relationship of design problems and

agglomerations was always above 57% and in most cases above 70%. The

proportions of design problems related to agglomerations were in most cases

much higher than the proportions unrelated to agglomerations.

A comparison of the Downstream AG and CA columns of Table 4.3

reveals that the results were very consistent: in all the systems, design

problems are much more often related to code-anomaly agglomerations than

to individual code anomalies. While there was some variation, the difference

between the two groups ranged from 17% to 25% for most systems. There

were two cases (S3 and S4) of projects where the difference was much higher

than 50% and only one case (HW) where the difference was under 10%. In

addition, further analysis confirmed that most of the design problems unrelated

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 4. Identifying Design Problems with Agglomerations: A
Multi-Case Study 66

to agglomerations were also unrelated to individual code anomalies.

Upstream Perspective. Next, we investigated if the observation of agglomer-

ations in the source code can help to indicate the presence of design problems.

To this end, we compared the upstream relationship of code-anomaly agglom-

erations and individual code anomalies to design problems. The Upstream AG

(agglomerations) and CA (individual code anomalies) columns of Table 4.3

show that agglomerations presented even better results from this perspect-

ive. With the exception of OODT, the proportion of agglomerations related

to design problems was at least twice as large as the proportion of individual

code anomalies. Moreover, for five systems (HW, S1, S2, S3 and S4), the pro-

portion of single code anomalies related to design problems was lower than

25%. These results further reinforce the potential of exploring code-anomaly

agglomerations as indicators of design problems.

The two analyses above provide evidence that agglomerations are more

helpful than individual code anomalies to identify design problems. However,

these analyses does not take into consideration the relation of design problems

with specific agglomeration topologies. Therefore, in the next Section, we

address this question by analyzing the relation of design problems with four

specific agglomeration topologies.

4.2.2
Identifying Design Problems with Specific Agglomeration Topologies

This section addresses question RQ2: “Which agglomeration topologies

are best indicators of design problems?” In order to answer this question,

we conducted three different analyses in the context of the seven systems.

First, we verified whether the relation of each agglomeration topology with

design problems is statistically relevant. The goal was to check if the four

categories of inter-related anomalies are good indicators of design problems.

Second, for each target system, we analyzed the proportion of agglomerations

in each topology related to design problems. Finally, we also complemented our

analysis with qualitative observations of interesting cases. As we mentioned in

Section 4.1.1, we took into consideration four topologies: intra-component (IC),

cross-component (CC), hierarchical (HI), and concern-based (CO).

Statistical Relation between Topologies and Design Problems.

Table 4.4 presents a contingency table for anomalous code elements affected

by topologies and by design problems (variables). The results in the table

represent the overall data, taking all the target systems into consideration. In

order to produce this table, we identified anomalous code elements – i.e., classes

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 4. Identifying Design Problems with Agglomerations: A
Multi-Case Study 67

Table 4.4: Contingency Table and Fisher’s Test Results
Topology AgDp AgNotDp NotAgDp NotAgNotDp p-value ORs

IC 190 479 347 4117 <0.001 4,704096
CC 167 389 370 4207 <0.001 4,878982
HI 82 140 455 4456 <0.001 4,704096
CO 97 133 440 4463 <0.001 7,392637
All 312 890 537 4596 <0.001 2,999686

and methods with at least one code anomaly – that satisfied the following

conditions: (i) first column (AgDp): the anomalous code elements were both

taking part in an agglomeration topology and realizing a design problem, (ii)

second column (AgNotDp): the anomalous code elements were participating

in a topology, but do not contribute to a design problem, (iii) third column

(NotAgDp): the anomalous code elements are affected by a design problems,

but not involved in any topology, and (iv) fourth column (NotAgNotDp): not

involved at all in any topology or design problem.

Then, we applied Fisher’s exact test and calculated Odds Ratio (Cornfield

1951). The goal was to identify whether the occurrences of each topology (ex-

perimental group) are statistically related to the occurrence of design problems.

Applying Fisher’s exact test, we observed that for every agglomeration topo-

logy the p-value was lower than 0.001. Odds Ratio shows the chances of code

elements taking part in any agglomeration to be related to design problems

were higher than for other code elements. These results suggest the relation

between topologies and design problems might be statistically significant. How-

ever, despite the statistical relation between topologies and design problems, it

is possible to observe that no topology predominantly affected code elements

with design problems. For example, only 30% of the elements taking part in

cross-component agglomerations were related to design problems. This result

was expected as different types of code anomaly relationships are likely to help

revealing design problems of different nature.

Proportion of Agglomerations Related to Design Problems.

Given evidence that agglomerations are related to design problems, it is im-

portant to know which agglomeration topology reveals more design problems.

Table 4.5 shows, for each agglomeration topology (column): the percentage of

agglomerations related to design problems (Related), the percentage of agglom-

erations unrelated to design problems (Not), and the number of design prob-

lems related to agglomerations (DP). Moreover, for each topology, Table 4.5

shows the median and the standard deviation for the columns Related and

Not. Finally, the Total column of Table 4.5 shows, for each system, two inter-

esting measures. First, it shows the total percentage of agglomerations related

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 4. Identifying Design Problems with Agglomerations: A
Multi-Case Study 68

Table 4.5: Percentage of agglomerations related and unrelated to design
problems
Topology Intra-component Cross-component Hierarchical Concern-based Total
System Related Not DP Related Not DP Related Not DP Related Not DP Related Not DP
OODT 61% 39% 20 73% 27% 240 78% 22% 21 90% 10% 252 71% 29% 350

MM 40% 60% 6 81% 19% 8 50% 50% 11 100% 0% 4 58% 42% 15
HW 41% 59% 21 45% 55% 163 25% 75% 3 75% 25% 170 45% 55% 187
S1 40% 60% 40 52% 48% 57 52% 48% 28 80% 20% 33 49% 51% 122
S2 35% 65% 41 40% 60% 59 50% 50% 40 66% 34% 46 40% 60% 131
S3 38% 62% 40 39% 61% 57 45% 55% 33 70% 30% 50 44% 56% 146
S4 66% 34% 83 34% 66% 48 0% 0% 0 100% 0% 10 50% 50% 87

Median 40% 60% 45% 55% 50% 50% 80% 20% 49% 51%
SD 0.12294 - 0.181108 - 0.244297 - 0.138924 - 0.104881 -

and unrelated to design problems. Second, it shows the total number of design

problems related to agglomerations. The reader should notice that the values

of the Total column cannot be obtained by using the data in other columns.

For example, the total number of design problems is not the result of summing

the number of design problems in each topology. The reason is that there

are intersections between different topologies, i.e., a design problem might be

related to more than one topology.

At a first glance, it is possible to observe the cases of intra-component,

cross-component and hierarchical topologies followed a similar trend. The num-

ber of false positives was high in several systems. For example, the intra-

component topology presented 59% of false positives (or more) in 5 out of 7

systems. The cross-component topology represents strong indicators of several

design problems in OODT and MM systems. However, the overall result of

this topology is similar to the results of the other syntactically-related code

anomalies. Therefore, our data reveal these types of agglomeration might not

be much helpful for programmers on effectively spotting design problems. For

example, if a programmer decides to analyze the cross-component agglomera-

tions, he would have to analyze more than half of all cases of cross-component

agglomerations in a system in order to reach an agglomeration related to a

design problem. Given the average number of cross-component agglomerations

in our sample is 200, the programmer might spend time analyzing approxim-

ately 100 agglomerations before finding a design problem. This situation be-

comes even worse if we observe that each agglomeration usually encompasses

more than two anomalous code elements.

There were much less occurrences of hierarchical topology than oc-

currences of intra-component and cross-component topologies. However, the

former followed, proportionally, the same trends of the latter. For most of the

target systems, there was at least 50% of false positives. Moreover, we did not

find any hierarchical agglomeration in one of the systems (S4). On the other

hand, this finding in S4 helped us to understand that hierarchical topologies

were much more useful to revel design problems in systems with extensive use

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 4. Identifying Design Problems with Agglomerations: A
Multi-Case Study 69

of inheritance, such as software frameworks. Only a few classes of S4 required

the advanced use of inheritance and polymorphism. On the other hand, OODT

is a framework that provides several low-level services for handling distributed

scientific data. As a result, several services are implemented using design pat-

terns and other structures that rely heavily on inheritance. The aforementioned

observations may help to explain the discrepancies in the hierarchical topology

results.

The concern-based topology was, by far, the most consistent indicators

of design problems. This finding is sustained by the fact that the concern-

based agglomerations were strong indicators of different design problems

across all systems. Concern-based agglomerations presented, proportionally,

the highest correlation with design problems, when compared to all other

topologies. For example, 90% of the concern-based agglomerations in OODT

were related to 252 instances of design problems. The superiority of concern-

based agglomerations was also much higher even for systems where the absolute

number of related design problems is much lower: (i) the percentage of true

positives was very high (from 66% to 100%), and (ii) the percentage of false

negatives was very low (from 0% to 25%). Considering the data from all

systems, we observed a median of 80% concern-based agglomerations related to

design problems. The standard deviation of 13.89% is very low as well. That is,

the percentage of concern-based agglomerations related to design problems was

relatively high in most of the target systems, with a very small gap from every

of them to the median. Regarding the absolute number of design problems

(DP), the concern-based topologies were related to a high number of design

problems in all the systems.

We also observed that all the cross-component, intra-component and hier-

archical agglomerations do not have relation to any specific type of design

problem. This finding contradicted our intuition. For example, we expected

cross-component agglomerations would serve as consistent indicators of cer-

tain design problems, such as Fat Interfaces, Overused Interfaces, Cyclic De-

pendencies, Unwanted Dependencies and Scattered Concern. All these types

of design problems are related to the communication of two or more design

components. Then, the manifestation of such design problems in the source

code could involve inter-related anomalies in two or more components. How-

ever, our expectation was not met. We had similar expectations for the other

cases of design problems and agglomerations. However, with the exception of

concern-based topology, none of these topologies was frequently related to a

specific design problem type through all the systems. There were only a very

few minor exceptions.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 4. Identifying Design Problems with Agglomerations: A
Multi-Case Study 70

On the other hand, we observed some design problem types were strongly

related to concern-based topologies. For example, the Overused Interface,

which was expected to be related to the intra-component topology, had a strong

relation to concern-based agglomerations. We observed that the overuse of

certain interfaces, in fact, was reflected by the presence of several anomalies in

the source code. However, these anomalies were not syntactically related. Their

relationship was established by the realization of a single concern by the code

anomalies. In general, we observed that the concern-based topology was almost

uniformly related to all types of design problems. This result is interesting in

the sense that it suggests concern-based agglomerations are useful, no matter

which type of design problem manifest in the system. However, existing work

(Abbes et al. 2011)(Macia 2013)(Moha et al. 2010)(Sjobert et al. 2013) does not

consider concern-based relationships to search for inter-related code anomalies.

Spotting the Locus of Design Problems with Concerns. As the

aforementioned results suggests, the use of concerns to spot the location of

design problems in the source code seems to be a promising strategy. The

location of a design problem in the source code cannot be spotted only by

analyzing the source code relationships (type reference, method call, etc)

between anomalous code elements. A single design problem may be scattered

in code elements unrelated in the source code. Therefore, even with a solid

knowledge about the system, designers or programmers may not be able to

detect all code elements contributing to a design problem. The use of concern-

based agglomerations may help to overcome this problem. In this study, we

observed almost all anomalies taking part in concern-based agglomerations

are often related to design problems. Moreover, we observed that, even with a

low number of occurrences (compared to other topologies), the concern-based

topology was correlated to a high number of design problems. In OODT and

HW, for example, the concern-based topology was correlated to much more

design problems than other topologies. Finally, we observed that concern-

based agglomerations are useful to reveal different types of design problems.

Therefore, they might be used in any type of system to help in the identification

of design problems. In contrast, other topologies presented very different

results depending on the system under analysis. The hierarchical topology,

for example, might not be useful for most of the commercial systems.

4.2.3
Early Detection of Congenital Design Problems

This section addresses the research question RQ3: “What proportion of

design problems manifest themselves as agglomerations in early versions of a

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 4. Identifying Design Problems with Agglomerations: A
Multi-Case Study 71

program?” Early manifestation means the design problems were present in the

first versions of a system. Therefore, they are likely to represent “congenital”

design problems, i.e., they were introduced at design time. To answer this

question we analyzed initial versions of four systems: S1, S2, S4 and OODT.

Then, we analyzed cases of false positives and false negatives in early versions

for all the systems. False positives are cases of agglomerations in early versions

that do not relate to a design problem. False negatives are cases of design

problems that are related to an agglomeration.

As opposed to our expectation, all the initial versions presented a high

correlation between agglomerations and design problems. We expected most of

the design problems would be “evolutionary”, i.e., they would be introduced

by software maintainers as the systems evolved. However, the proportion of

design problems related to agglomerations in early versions was up to 75% for

S1, S2 and S4. For OODT the proportion was higher than 60%. Conversely, the

proportion of agglomerations related to design problems was up to 40% for all

the systems. The analysis of all the initial versions reveals that a considerable

number of design problems were introduced in the first version of each target

system. A considerable proportion of design problems are related to code-

anomaly agglomerations already in the first version. This result shows that

change history analysis (Gı̂rba et al. 2007) would not be an effective solution

to reveal many instances of design problems. It would be hard to remove such

design problems when eventually the agglomeration’s anomalies start to suffer

co-changes through the later versions.

Analysis of Early and Late Versions. We also explicitly compared

the nature of design problems and agglomerations in “early” and “late” ver-

sions. The comparison of the different versions in two of the analyzed systems

– MM and HW – serve to illustrate most of our findings. In MM, we compared

versions 1 and 8. Version 1 of MM (0.8 KSLOC) is much smaller than version

8 (10 KSLOC); therefore, the number of code anomalies and agglomerations

is proportionally small. Even with few code elements, the first version already

contained, partially or totally, 13% of the agglomerations present in version

8. One of them, for example, is related to a class called BaseController. In

the first version, this class was identified as being part of an intra-component

agglomeration. This class is anomalous and is related to another anomalous

code element of the same component. In the subsequent versions, this problem

expanded to several code elements, causing the emergence of a new agglom-

eration. More specifically, in version 8, we identified the existence of a hier-

archical agglomeration, involving classes that inherit from the BaseController

class. This suggests that different agglomeration topologies may be useful at

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 4. Identifying Design Problems with Agglomerations: A
Multi-Case Study 72

different stages of the life cycle of a system. Moreover, the identification and

removal of agglomerations in the first version can prevent the introduction of

more severe problems in subsequent versions.

In HW, we compared versions 1 and 10. In this case, version 1 (6 KSLOC)

was only somewhat smaller than version 10 (8 KSLOC). The first version

already contained 31% of agglomerations found in version 10. As in the case of

the MM system, we observed that some agglomerations from a late version had

already started to form in the first version. For example, in the first version of

HW, we identified several combinations of Long Method, Feature Envy, and

Divergent Change that evolved into cross-component agglomerations in version

10.

False Positive and False Negative Analysis. In order to finalize

our analysis on the relationship between agglomeration topologies and design

problems, we further analyzed all the cases of false positives and false negatives

in early and late versions. In this work, a false positive is an agglomeration that

was identified as not being related to any design problem. A false negative is a

design problem not related to any of the agglomerations. The intra-component

topology presented a high number of false positives in most systems. This

observation is illustrated by the percentages in the columns “Not” in Table 4.5.

The table does not represent the number of false negatives, but they were

much lower (3 to 5 times) than the number of false positives in each system.

We performed an inspection of all these cases and identified factors related to

the occurrence of both false positives and false negatives. They are discussed

in the next paragraphs.

Other Agglomeration Topologies. Contrary to our expectations,

there were some instances of congenital or evolutionary design problems

related to intra-method or intra-class agglomerations. The most common

cases were co-occurrences of Long Method/Shotgun Surgery and Feature

Envy/Shotgun Surgery across all the systems. Even though the pair of Shotgun

Surgery and Feature Envy is located in the same method, they were often

related to particular cases of Fat Interface problems. This suggests that, even

encompassing trivial forms of relationships, both intra-method and intra-class

should be considered during the identification of design problems.

Agglomerations Indirectly Related to Design Problems. Even

though the cases of false positives and false negatives were high, we observed

that agglomerations involved in these cases were located in “outer” classes or

“neighbor” methods realizing design problems. In other words, we observed

there was a frequent “indirect” relation between the design problem and the

agglomeration. This indirect relation with a design problem often occurred in

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 4. Identifying Design Problems with Agglomerations: A
Multi-Case Study 73

two cases: (1) a class C is indirectly related to an agglomeration A if one or

more inner methods of C are related to A; and (2) a method M is indirectly

related to an agglomeration A if the enclosing class of M is related to A.

In this way, the programmer would spot a design problem if he expands the

analysis to consider the outer classes and inner methods of the agglomeration

A. The consideration of these indirect relationships would be responsible for

reducing an average of 40% of false positives and false negatives across the

systems. This result shows that, even though agglomerations might not help

to determine the exact location of a design problem, they help to determine

the approximate locus of a design problem in the source code. Therefore, in

such cases, we confirmed that the contextual information provided by SCA

would be fundamental to the identification of design problems.

4.3
Threats to Validity

Construct Validity. The construct validity is threatened mainly by

possible errors introduced in the identification of design problems and agglom-

erations. In order to mitigate this threat, for agglomerations, we relied on

the only known tool that is able to identify agglomerations. Finally, regarding

the identification of design problems, we mitigated the imprecision of manual

inspection involving the original programmers in this process. Furthermore,

programmers, who had previous experience on the detection of design prob-

lems made the identification of design problems.

Conclusion Validity. The main threat to the conclusion validity is

the number of evaluated versions of each system. A study involving several

versions of each system is desired. However, it would be impracticable in our

study due to the number of systems (7) and the limited access to the original

programmers. A higher number of versions would demand more time for

programmers to identify design problems. However, their availability is limited.

Therefore, we tried to mitigate this threat by selecting, for each different

system, a version in a different life cycle stage. In addition, we compared

different versions of two systems. Another threat to the conclusion validity

is the use of Fisher’s exact test. Although the test is suitable for contingency

tables, it might not be enough to assert that the correlation of topologies and

design problems is statistically relevant. Therefore, this result does not allow us

to make strong assumptions about such relationship. We mitigate this threat

by complementing the quantitative analysis with qualitative observations.

Internal and External Validity. The main threat to the internal and

external validity is related to the set of analyzed systems. We tried to mitigate

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 4. Identifying Design Problems with Agglomerations: A
Multi-Case Study 74

this threat using systems with different sizes (ranging from 8 to 129 KSLOC),

with different purposes (academic, commercial and open-source), with different

domains, that were implemented using different design styles and that suffer

from a different set of design problems. Furthermore, the analyzed systems

were developed by teams of different sizes and with different levels of software

development skills. However, we are aware that we should perform more studies

involving different systems.

4.4
Concluding Remarks

In this work, we analyzed to what extent recurring relationships of

code anomalies (agglomerations) are related to design problems. We studied

four agglomeration topologies in a longitudinal multi-case study involving

7 systems of different sizes and from different domains. Analyzing more

than two thousand agglomerations, we were able to reach some relevant

conclusions. Agglomerations are indeed better than individual code anomalies

for the identification of design problems. Intra-component, cross-component

and hierarchical topologies were not good indicators of design problems.

On the other hand, design problems were often more precisely indicated

by concern-based agglomerations. The concern-based relationships were, by

far, the best indicators of both congenital and evolutionary design problems,

thereby questioning the usefulness of existing techniques to support design

problems in the source code.

Based on the aforementioned findings, we can conclude that SCA

provides effective means to study the relationship of code anomaly agglomer-

ations and design problems. In addition, SCA-supported agglomerations seem

to provide more effective means (than individual code anomalies) to assist loc-

ating a wide range of design problems in the source code. In addition, the use

of contextual and historical information also proved to be useful to identify

design problems that are not detected with only the basic information about

the agglomerations.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

5
Identification of Design Problems with Anomaly Agglomera-
tions: An Empirical Evaluation

Previous evaluation (Chapter 4) provided evidence that agglomerations

are more related to design problems than isolated code anomalies. In fact, a

single code anomaly only represents a possible candidate to identify one part of

a design problem (Yamashita & Moonen 2013). Indeed, most code anomalies

are poor indicators of design problems when analyzed individually (Macia et

al. 2012b). Even worse, several design problems – such as Fat Interface and

Scattered Concern – are difficult to find since programmers have to locate and

to inspect multiple code elements that are part of the problem. For example, for

a programmer to identify an overused interface; he/she needs to reason about

the interface and all the classes that implement the interface. Furthermore,

for a programmer, it is hard or even impossible to identify which inter-related

code anomalies he/she should focus on. Even for small software systems, there

are hundreds of code anomalies (Macia et al. 2012c) and thousands of possible

relationships to examine. Therefore, programmers should only focus on code

elements that are related to design problems, i.e., only elements infected with

code anomalies that are part of an agglomeration.

Although our previous evaluation has suggested that programmers would

better locate a design problem (and its full extent) when reasoning about

anomaly agglomerations rather than single anomalies, we do not know if

the programmers will actually find more design problems when they use

anomaly agglomerations rather than single anomalies. Therefore, a controlled

experiment is required to systematically evaluate if programmers can benefit or

not from using anomaly agglomerations to identify design problems in realistic

project settings. Moreover, this evaluation allows us to identify the limitations

and strengths of an agglomeration-driven technique to identify design problem.

The aforementioned experiment needs to rely on a technique that

provides several agglomeration-related resources. Therefore, we have selected

the new technique, called Synthesis of Code Anomalies (SCA), proposed in

this dissertation (Chapter 3). SCA is intended to support the reasoning about

anomaly agglomerations and to facilitate the location of code elements realiz-

ing a design problem. In fact, to the best of our knowledege, SCA is the only

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 5. Identification of Design Problems with Anomaly
Agglomerations: An Empirical Evaluation 76

technique that can detect different types of agglomerations and can provide

different information about them. As aforementioned, a controlled evaluation

is required to determine (1) whether agglomeration (in this case, detected with

SCA) is useful or not for the identification of design problems, and (2) which

aspects of a state-of-the-art synthesis technique (i.e., SCA) should be improved

in order to effectively identify design problems.

In this context, this chapter reports the design and execution of a

controlled experiment aimed at addressing the goals above. In this experiment,

subjects had to identify design problems using two techniques. The fist

technique is SCA, the representative of an agglomeration synthesis technique,

while the second one is a conventional technique for code anomaly detection.

The later is called here as a “conventional technique” because it represents

how programmers identify design problems in source code nowadays.

The conventional technique relies on metrics-based strategies to detect

code anomalies (Marinescu 2004) (Section 2.3 of Chapter 2). After detecting

individual code anomalies, they are presented as a flat list to programmers. The

type of anomaly and the affected code element composes each element in this

list. The name of the affected class and/or affected method is an example of

code elements. Conventional technique is used by some of the state-of-the-art

tools for anomaly detection (Fowler 1999)(Lanza & Marinescu 2006)(Emden

& Moonen 2002)(Marinescu 2004)(Moha et al. 2010)(Rapu, Ducasse, Gı̂rba &

Marinescu 2004)(Ratzinger et al. 2005). Each anomaly in the list is used by

programmers as an indicator of a design problems. Therefore, the comparison

of the conventional technique with SCA is suitable as they can be used by

programmers to achieve the same goal.

In the experiment, each subject identified design problems in two different

software components using each technique at a time. For example, the subject

S1 starts identifying design problems. He/She applies the SCA technique to

find design problems in the software component X. After finishing this task, the

same subject S1 receives a different software component (Y). Then, he/she

applies the conventional technique to find design problems in Y. When subject

S1 finishes the task, the experiment restarts with a new subject (S2). Since

the participants apply a different technique in each component, we selected for

the experiment two software components (X and Y) that are similar in terms

of size (KSLOC), amount of code anomalies and amount of design problems.

After identifying design problems using both techniques, the subject had

to answer a questionnaire. The answers were used to collect feedback about

the techniques used by him/her. The combination of the experiment results

with the subject’s feedback enables us to perform a broad qualitative and

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 5. Identification of Design Problems with Anomaly
Agglomerations: An Empirical Evaluation 77

quantitative analysis about the use of agglomerations for the identification of

design problems.

This experiment revealed the participants attempted to guess more when

they were using the conventional technique than when they were using the

SCA technique. The largest number of guesses usually led them to identify

more false positives with the conventional technique (46% of false positives

with conventional against 34% with SCA). The less amount of information

about each code anomaly may be the reason for the large amount of guesses.

Consequently, they were more likely to make wrong conclusions. In fact, most

subjects confirmed that SCA provides useful information for the identification

of design problems.

Regarding the categories of agglomerations, this study allowed us to

evaluate which categories were the most accurate for the identification of design

problems. According to the subject’s opinion, the accurate useful one was intra-

method. This was not an expected result because a design problem is often

reified by multiple source code elements. However, the intra-method category

only searches for agglomerations grouped in a small portion of the system’s

design. Following this idea, an intra-method agglomeration would not reveal all

information that a programmer needs when trying to identify design problems.

However, in a careful analysis of the experiment results, we observed that the

success of intra-method is due to the fact that subjects did not have previous

knowledge about the component’s design. Thus, many of them preferred to use

a more simple category of agglomeration.

Despite being the most simple form of agglomeration, intra-method

is much more useful than individual code anomalies. In comparison to an

individual anomaly instance, an intra-method agglomeration has the advantage

of being more likely to help a programmer, as (i) it exposes a group of anomaly

instances – instead of an individual anomaly, and (ii) it provides much more

information about the anomalies and their surrounding context.

Nevertheless, it is important to mention that other topologies were

considered helpful as well. Confirming the empirical evidence of our previous

study (Chapter 4), the concern-based category was considered by subjects the

second most accurate. This result was reinforced by the following fact: design

problems identified with the help of concern-based agglomerations were the

most complex and hard to spot. As exposed in the previous study (Chapter 4),

agglomerations of this category are more likely to represent design problems

than other agglomerations. This happens because, besides revealing inter-

related anomalous elements, a concern-based agglomeration also shows the

relation of anomalous elements with poorly designed concerns, which are often

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 5. Identification of Design Problems with Anomaly
Agglomerations: An Empirical Evaluation 78

responsible for introducing design problems.

With respect to improvements of SCA technique, half of the subjects said

that SCA should provide means to prioritize agglomerations using alternative

criteria. In addition, some subjects told that SCA should provide tips on

which design problems each agglomeration category is more likely to represent.

Finally, subjects said that detailed graphical representations of code anomalies,

agglomerations and the actual program design would be helpful to reason about

design problems.

The remainder of this chapter is organized as follows. Section 5.1 presents

a detailed description of the study, including empirical procedures, research

questions and other relevant information. Section 5.2 presents the data ana-

lysis. Section 5.3 discusses the threats to validity. Finally, Section 5.4 concludes

this chapter.

5.1
Study Definition

This section contains a detailed description of the experiment. Sec-

tion 5.1.1 presents the criteria used to select subjects. Section 5.1.2 provides

a description about the participants’ profile. Section 5.1.3 presents the soft-

ware components explored in the experimental tasks. Section 5.1.5 presents

the empirical procedures followed during the execution of the experiment. Sec-

tion 5.1.4 presents the research questions addressed by this study.

5.1.1
Selection of Subjects

We needed to select participants to use both SCA and conventional

techniques in order to do the evaluation of agglomeration. The usage of

both techniques enables us to perform a comparative analysis and highlight

benefits and drawbacks of using agglomerations for the identification of design

problems. For a subject to be chosen as a participant, he/she would need to

meet some requirements. The requirements for each subject were:

R1: He/She should have 4 years or more of experience with software devel-

opment and maintenance.

R2: He/She should be responsible for design decisions in at least one relevant

software project. In order to be considered, the software project must

have at least (i) 3 programmers involved in the software development,

(ii) the size of 10 KSLOC, and (iii) 3 versions released.

R3: He/She should have basic knowledge about code anomalies and refact-

oring.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 5. Identification of Design Problems with Anomaly
Agglomerations: An Empirical Evaluation 79

R4: He/She should have at least intermediary knowledge about the Eclipse

IDE.

R5: He/She should have at least intermediary knowledge about the Java

programming language.

As far as R3, R4 and R5 are concerned, the subjects were required to

inform their knowledge level. Table 5.1 shows the levels used to classify the

subjects’ knowledge in each topic. A description of each level was given to the

subjects so that they could have a similar interpretation when answering the

questions. Based on the answer, we could check if the subject satisfies or not

each requirement.

Table 5.1: Knowledge classification
Classification Description
None I have never heard about it
Minimum I have heard about it, but I do not use it
Basic I have a general understanding, but almost never use it
Intermediary I have a good understanding, and use basic features sometimes
Advanced I have a deep understanding, and often use advanced features
Expert I am a specialist in this topic, and use many features almost every day

After being informed about the knowledge levels, the subjects were asked

to fill a form. The questions in the form basically addressed the requirements

aforementioned. The answers provided by the subjects were analyzed to

determine which subjects were eligible to be a participate in the experiment.

We highlight that we have not done any kind of test to verify if the participants

had the knowledge that they claimed to have. However, we emphasize to the

subjects that they should be as honest as possible. We made clear that the goal

of the experiment was not to compare the subjects between each other, but

compare techniques. In addition, we have guaranteed them that their identities

would not be revealed.

5.1.2
Subjects Profile

We want to analyze if the agglomeration technique (SCA) can help

programmers to find the fully location of each design problem better than

a conventional technique. In order to perform this analysis, we selected a

set of participants to use both techniques. The participants chosen for the

experiment were either software development professionals or PhD students.

We prioritized the selection of professionals, which work in different software

organizations, rather than students. Therefore, we chose six professionals and

two PhD students.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 5. Identification of Design Problems with Anomaly
Agglomerations: An Empirical Evaluation 80

The participants in the study were selected after filling out a characteriz-

ation form, as described in the previous subsection. The questions allow us to

know about the expertise of the participants in the topics related to the study:

(a) their experience in software development; (b) their expertise in Apache

OODT, and (c) their formal education. The responses obtained through the

characterization form allowed us to identify some key characteristics of each

participant and consequently, allowing us to create a profile about each parti-

cipant. This was an important step because it allowed us to select the subjects

that are capable of providing valuable feedback. For example, a subject who

does not have minimum knowledge about Java would spend too much time

trying to understand the programming language. Thus, he/she would not be

able to identify design problems within time constraints of the experiment. By

analyzing data from the characterization form, we were able to identify and

discard this kind of subject. Table 5.2 summarizes the characteristics of each

subject.

Table 5.2: Subjects’ Profile
ID Experience Education DD Knowledge

(in years) OODT Java CR Eclipse
1 5 PhD Yes None Advanced Advanced Advanced
2 5 Graduate Yes None Intermediary Intermediary Intermediary
3 6 Graduate Yes None Advanced Basic Advanced
4 12 Graduate Yes None Expert Advanced Expert
5 5 Graduate Yes None Advanced Advanced Advanced
6 10 Graduate Yes None Intermediary Intermediary Intermediary
7 8 Master Yes None Advanced Intermediary Advanced
8 4 PhD Yes None Advanced Intermediary Advanced

DD = Has experience with Design Decisions?
CR = Code Anomalies and Refactoring

As exposed in the Education column of Table 5.2, 100% of subjects had a

formal education in computer science. In addition, the subjects had in average

7 years of experience with software development (Experience column). Finally,

all the subjects had previous experience with design decisions (DD column),

according to the R2 requirement described in Section 5.1.1.

Regarding knowledge, 100% of subjects had no previous knowledge about

the Apache OODT system (OODT column). All the selected participants were

considered suitable for this experiment due to the following reasons: (1) they

had no less than four years of experience with software development, (2) all

of them had formal education in computer science, (3) all of them had at

least intermediary knowledge about the Java programming language (Java

column) and the Eclipse IDE (Eclipse column), and (4) they have at least

basic knowledge about anomalies and refactoring (AR column).

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 5. Identification of Design Problems with Anomaly
Agglomerations: An Empirical Evaluation 81

5.1.3
Target Components

We chose two software components to be used in the experimental tasks.

In order to avoid bias in the experiment, we selected the components based on

their degree of similarity. Therefore, both components used in the experiment

are similar in:

– Complexity of the software design: in order to prevent that the identi-

fication of design problems was easier in a software component than in

another, we had to choose two components with similar complexity, since

each subject had to study the design of both components.

– Size (KLOC): each participant had a limited time to find design prob-

lems. Therefore we chose both components with similar size to avoid

that the participant expent more time in one component than in another

because of size difference.

– Amount of code anomalies and design problems: in order to make the

identification of design problems fair, both components should have a

similar amount of code anomalies and design problems. This allowed

the participants to find the same amount of design problems in both

components.

Push Pull and Workflow Manager were the software components chosen

for the experiment. Both of them are components extracted from the Apache

OODT. The goal of OODT is to support the management and storage of

scientific data (Mattmann et al. 2006). We chose Apache OODT because it is

an open source with a well-defined set of design problems. Besides, OODT has

components that can be evaluated independently and with similar features as

complexity of design and size. A short description about each component is

presented below.

Push Pull. This component is responsible for downloading remote content

(pull), or accepting the delivery of remote content (push) to a local staging

area. Content in the staging area is injected into the File Manager system by

a crawler framework. Push Pull is a framework with various extensible points.

It also provides a fully tailorable Java-based API for the acquisition of remote

content.

Workflow Manager. This component is responsible for description, execu-

tion, and monitoring of workflows, using a client-server system. Workflows are

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 5. Identification of Design Problems with Anomaly
Agglomerations: An Empirical Evaluation 82

typically considered to be sequences of tasks, joined together by control flow

and data flow, which must execute in some ordered fashion. Workflows typ-

ically generate output data, perform routine management tasks (e.g., sending

emails), and/or describe a business’s internal routine practices. The Workflow

Manager is an extensible software component that provides an XML-RPC – re-

mote procedure call protocol which uses XML to encode its messages – external

interface, and a fully tolerable Java-based API for workflow management.

5.1.4
Research Questions

After applying the experiment with all participants, we were able to

combine the experiment results with the subject’s feedback. The combination

enables us to perform a broad qualitative and quantitative analysis of using

agglomerations for identification of design problems in contrast with the

conventional technique. The analysis was based on the following research

questions:

RQ1. Which is the most accurate technique regarding the identification of

design problems?

RQ2. In accordance with the participants, which are the most useful categories

of agglomeration?

RQ3. How SCA can be improved?

Research question RQ1 allows us to analyze which was the most helpful

technique. To conduct this analysis, we compare the two techniques by

analyzing the list of possible design problems identified by the subjects. In this

analysis, we use a ground truth to confirm or refute each design problem. Then

we compare the number of false positives produced with the SCA technique

against the number of false positives produced with conventional technique.

The higher the number of false positives is the lower is the technique’s accuracy.

Research question RQ2 aims at complementing the results obtained in

our previous study (Chapter 4). This question evaluates, from the subjects

point of view, which categories (i.e., topologies) of agglomeration are the most

useful. To answer this question, subjects are asked to report (i) which category

of agglomeration was used in the identification of each design problem, and (ii)

which categories of agglomeration were the most useful according to his/her

opinion.

Finally, research question RQ3 allows us to know how the SCA technique

can be improved according to the opinion of experienced programmers. This

question is addressed by asking subjects, after the experiment, to report their

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 5. Identification of Design Problems with Anomaly
Agglomerations: An Empirical Evaluation 83

opinion about the SCA technique. All the questions are designed to gather

feedback about key characteristics of SCA, such as contextual information,

history information and agglomeration topologies.

5.1.5
Empirical Procedures

The experiment was conducted individually with each subject in order

to answer our research questions. As already mentioned, subjects were selected

based on a questionnaire. Each selected subject worked in tasks divided

into two phases. Both phases involved similar tasks. The only difference

between them were the combinations of technique (Section 3) and components

(Subsection 5.1.3) used in the phase. For example, a given subject X worked in

the first phase using the SCA technique and the Push Pull component. Then,

in the second phase the same subject X will use the conventional technique

and the Workflow component. Therefore, there are four different combinations

since there are two techniques and two components. In order to have a fair

comparison, all subjects were equally divided into four groups (Table 5.3).

Each group corresponds to a different combination of technique, component

and phase. The order of execution (phase 1 or 2) was also considered because

the learning curve may influence the results. For example, a technique that

is always used in phase 2 may artificially outperform the technique and to

present better results than the technique that were always used in phase 1.

The reasons is that, in phase 2, a subject will have learned in phase 1 and, as

a consequence, better perform the tasks.

Table 5.3: Combinations of component, technique and phase
Phase 1 Phase 2

Subject Technique Project Technique Project
Group 1 SCA Push Pull Conventional Workflow
Group 2 SCA Workflow Conventional Push Pull
Group 3 Conventional Push Pull SCA Workflow
Group 4 Conventional Workflow SCA Push Pull

Since the number of subjects is not enough for a controlled experiment,

we applied a quasi-experiment (Shadish, Cook & Campbell 2001). A quasi-

experiment is an experiment in which the units/groups are not assigned to

conditions randomly. Moreover, we cannot select subjects randomly because we

need to ensure that they meet the requirements described in Section 5.1.1. Our

quasi-dependent variable (x-variable) is the technique used to identify design

problems. While the number of design problems found by the participants, but

marked as true positives, is the dependent variable (y-variable). We used as

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 5. Identification of Design Problems with Anomaly
Agglomerations: An Empirical Evaluation 84

control group the group of participants that used the conventional technique

and the group of participants that used the SCA technique as the treatment

group.

Tasks

Before starting the experiment, each subject received training about basic

concepts and terminologies. This training was given only once for each subject

before the first phase of the experiment. It consisted of a presentation that last

for around 15 minutes, covering the following topics:

– Software Design

– Software Components and Connectors

– Design Problems

– Code Anomalies

Besides this training, each subject received a document summarizing all

the topics covered in the presentation. This document was available to be

consulted during the whole experiment. The main objective of this training

session was to ensure the subjects were exposed to the mandatory background

required to understand and properly execute the experimental tasks. The

basic training was followed by the two phases of the experiment. Each phase

consisted of four tasks: (1) understand the component, (2) learn how to use

the technique, (3) identify design problems, and (4) provide feedback about

the technique. Details about the experimental tasks are provided below.

Understand the Component: Before using the technique to find design

problems, the participant needed to understand about the component used

in the experiment. For example, let us assume the Push Pull component is the

first system selected for the participant. Then, we gave to the participant a

document with a (i) brief description about the component and its goal, and

(ii) a description about the design of the Push Pull, including its constituent

sub-components, object model, and extension points. We also gave the subject

the source code of the component. As both systems have similar complexity

of design and the design is not complex (e.g., few classes, packages and few

connections between the components), the participant had 20 minutes to read

the document and the source code before going to the next task.

Learn How to Use the Technique: In this task we introduced the technique

to find design problems. The participant is expected to apply the technique in

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 5. Identification of Design Problems with Anomaly
Agglomerations: An Empirical Evaluation 85

the component assigned to him/her in the previous task. Consider that SCA

is the first technique that the participant will apply in order to find design

problems. Then, he/she received a document explaining the particularities of

the SCA technique. Using the document, we explain to the participant how the

technique works. For example, for SCA, we explained how SCA uses a group of

inter-related code anomalies to indicate possible instances of design problems.

We also show to the participants which agglomerations the technique finds and

how he/she will run the technique using Eclipse IDE. On the other hand, if

the technique selected was the conventional technique, we explained how the

conventional technique detects individual code anomalies, giving as output a

flat list to programmers use during the identification of design problems. This

task lasted for 10 minutes. As the use of each technique is simple, we gave to

subjects this limit of time.

Identify Design Problems: In this task, the participant had 40 minutes

to apply the technique in the selected component. This is the main task in

the experiment. Thus, we emphasized to the participant the importance of

achieving the key goal of finding design problems. For each design problem

found, the participant was asked to provide the following information: (i)

short description of the problem, (ii) possible consequences caused by the

problem, (iii) classes, methods and/or packages realizing the design problem

in the source code, and (iv) the type(s) of agglomerations (Section 3.3) that

helped him/her to identify the design problems. If the participant was using the

conventional technique, he/she needed to provide almost the same information,

but instead the type of the agglomeration, he/she needed to provide the

anomaly or anomalies that he/she used to identify the design problems. We

gave the subjects this time constraint based on an pilot experiment that we

performed in order to adjust the time required for this task.

Provide Feedback about the Technique: In this task, the participant

received a feedback form. This form provides a list of questions, which enables

the participant to expose his/her opinion about the used technique. The form

requires information about (i) the (dis)advantages of using the technique

to identify design problems, (ii) whether he/she understood all information

provided by the technique, (iii) which types of information were fundamental

to identify design problems, (iv) which he/she believes that should be done

to improve the technique, (v) what he/she thought about the use of the

agglomerations (or code anomalies), and (vi) how the graphical interface

provided by the technique affected his/her performance. After the fourth task

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 5. Identification of Design Problems with Anomaly
Agglomerations: An Empirical Evaluation 86

was completed, we asked the participant to repeat all tasks, but now with a

different component and a different technique.

5.2
Results

This section presents the results and analysis of the empirical study

described in Section 5.1. The objective of this study was to evaluate SCA

with the participation of several experienced programmers. In this evaluation,

SCA was compared to a conventional technique. Besides that comparison, we

asked for feedback in order to improve SCA and improve our future work.

The remainder of this section is organized as follows. Section 5.2.1 presents a

comparison on the use of SCA and the conventional technique. Section 5.2.2

presents a discussion on the most relevant categories of agglomeration. Finally,

Section 5.2.3 presents suggestions for the improvement of SCA.

5.2.1
Expectations Confirmed: SCA overcomes the Conventional Technique

This section aims at answering the research question RQ1: “Which is the

most accurate technique regarding the identification of design problems?”. In

order to answer this question, we asked subjects to analyze two components

with the aim of identifying design problems. As described in Section 5.1.5, the

subjects performed this task using different techniques for each component.

After completing this task, each subject provided two lists of possible design

problem. In other words, in each component, the subjects identified possible

instances of design problems that they believed to be real design problems.

After this, we analyzed whether the design problem candidates were in fact

true positives or false positives. In this context, a true positive is an instance

of design problem, which was confirmed by a ground truth analysis or by our

own analysis. On the other hand, a false positive is a design problem that was

neither confirmed in the ground truth analysis nor in our own analysis.

After performing the aforementioned analysis, we obtained the data

presented in Table 5.4. This table summarizes the results for both conventional

and SCA techniques. Table 5.4 shows the number of true positives and false

positives for each subject (line) and technique (column). Finally, in the last

line of the table, true positives and false positives are summarized considering

the outcomes of all subjects.

Conventional Technique. According with Table 5.4, subjects guessed more

when they used the conventional technique than when they used SCA. First,

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 5. Identification of Design Problems with Anomaly
Agglomerations: An Empirical Evaluation 87

Table 5.4: Comparison between conventional and SCA

ID
Conventional SCA

True Positives False Positives True Positives False Positives
1 1 1 2 1
2 1 4 0 3
3 1 4 3 2
4 1 3 2 0
5 3 1 4 0
6 1 0 1 0
7 1 1 1 1
8 3 0 3 0

All 12 14 14 7

let us consider only data related to the use of conventional technique. Table 5.4

shows that, using the conventional technique, three subjects (2, 3 and 4)

presented a number of false positives much higher than the number of true

positives. For subjects 1 and 7 the number of true positives and false positives

was equal to 1. Finally, compared to other subjects, subjects 5, 6 and 8 achieved

more success, as they were able to identify more true positives than false

positives.

Considering all subjects, the differences between true positives and false

positives for the conventional technique is not very significant. Considering all

guesses – i.e., all the design problem candidates – 46% were false positives

while 54% were true positives. This means that more than half of the guesses

were wrong. In addition, with the exception of subjects 5 and 8, all the

subjects presented unsatisfactory results using the conventional technique.

Even though some of them even identified a considerable amount of design

problem candidates, the majority of them were false positives. This result

reinforces our claim (Chapter 3) that a conventional technique does not provide

enough information for the identification of a considerable number of design

problems.

Is SCA a better alternative to detect design problems? The results above

show that conventional techniques may not provide all the information that a

programmer needs to identify and to analyze design problems. Therefore, we

want to know if SCA, in fact, overcomes certain limitations of conventional

techniques. In order to test this hypothesis, consider Table 5.4 again. The

last two columns of this table shows the number of false positives and true

positives identified when subjects used SCA. In this case, 4 out of 8 subjects

identified only true positives. In other words, half of the subjects found only

actual design problems when using SCA. In addition, just the subject number 2

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 5. Identification of Design Problems with Anomaly
Agglomerations: An Empirical Evaluation 88

identified only false positives with SCA. In spite of that, it is important to note

that the same subject presented unsatisfactory results when using conventional

technique as well.

When we consider all subjects, an outstanding result becomes evident.

Using SCA, subjects were much more careful in the identification of design

problems. This finding is confirmed by the fact that with SCA subjects

identified only 21 design problem candidates against 26 ones with conventional

technique. From the 21 candidates, 66% were true positives, while only 34%

were false positives. The overall analysis of all the individuals show that the

use of SCA allowed better or (at least) similar accuracy on the identification

of design problems. There was only a single case where the subject achieved

slightly better results with the conventional technique.

According to our observations during the experiment, the better results

of the SCA technique in comparison to the conventional technique is due to the

following facts. In general, subjects were tempted to trust in the results presen-

ted by both techniques. As the conventional technique provide limited inform-

ation about each anomaly instance, they spent very time reasoning about each

instance. On the other hand, the better accuracy of SCA (Chapter 4) combined

with the contextual and history information allowed subjects to better evaluate

each agglomeration. Thus, they were able to identify more true positives.

Given all the evidence presented above, it is possible to conclude that

SCA is more accurate than the conventional technique for the identification of

design problems. The amount and quality of the information provided by SCA

helped subjects to conduct more precise analyses. Thus, they ended up identi-

fying more true positives when using SCA than when using the conventional

technique. Moreover, in post-experiment interviews, most subjects said the in-

formation provided by SCA is relevant and useful. On the other hand, many

subjects complained from the incompleteness of the information provided by

the conventional technique.

5.2.2
The most useful category of agglomeration

This section aims at answering research question RQ2: “In accordance

with the participants, which are the most useful categories of agglomeration?”.

To answer this question, we asked subjects what were the most useful categories

of agglomeration. After that, we checked the consistency of their answer

with the agglomerations used by them to identify design problem candidates.

Table 5.5 summarizes the number of times each category was mentioned as the

most useful. The first column of this table shows the category name and the

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 5. Identification of Design Problems with Anomaly
Agglomerations: An Empirical Evaluation 89

Table 5.5: The most relevant categories of agglomeration
Category # of Mentions

Intra-method 5
Concern-based 3

Intra-class 2
Intra-component 1

Hierarchical 1

second column presents the number of mentions for each category.

Surprisingly, according to the subject’s opinion, the most useful one was

the intra-method agglomeration. This was not an expected result because

most of the design problems (Macia 2013) are likely to be reified by multiple

source code elements. However, the intra-method category only comprises

agglomerations grouped in a tiny behavior (method) of the system’s design.

Therefore, our expectation was that an intra-method agglomeration would not

reveal all information that a programmer needs when trying to identify design

problems. However, in a careful analysis of the experiment results, we observed

that the popularity of intra-method agglomerations amongst most participants

were due to the fact that subjects did not have previous in-depth knowledge

about the component’s design. Thus, many of them preferred to use a more

trivial category of agglomeration as they would need to inspect and understand

only a single method (rather than various methods, classes or packages).

However, despite being the most simple form of agglomeration, the intra-

method category still proved to be more useful than individual code anomalies.

In comparison to individual anomaly instances, the advantage of an intra-

method agglomeration relies on a higher likelihood of helping a developer to: (i)

expose a coherent group of anomalies confined into the method and altogether

indicating a design problem, and (ii) provide much more information about the

inter-related anomalies and their surrounding context (i.e., about the clients

and servers of the problematic method).

Nevertheless, it is important to mention that other topologies were

considered helpful as well. Confirming the empirical evidence of our previous

study (Chapter 4), the concern-based category was considered by subjects the

second most useful. This result was reinforced by the following fact: design

problems identified with the help of concern-based agglomerations were the

most complex and hard to spot. As exposed in the previous study (Chapter 4),

agglomerations of this category are more likely to represent design problems

than other agglomerations. This happens because, besides revealing inter-

related anomalous elements, a concern-based agglomeration also shows the

relation of anomalous elements with poorly designed concerns, which are often

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 5. Identification of Design Problems with Anomaly
Agglomerations: An Empirical Evaluation 90

responsible for introducing design problems.

5.2.3
Improving SCA

This section aims at answering research question RQ3: “How SCA could

be improved?”. To answer this question, after the experiment, we asked

subjects to provide feedback about SCA. We asked them (1) which additional

information SCA could provide, and (2) which information provided by SCA

is useless.

A considerable proportion of subjects reported that SCA should provide

means to prioritize agglomerations using different criteria. This prioritized

list of agglomerations would help a developer to progressively analyze the

agglomerations that have more chance to represent design problems. This

would be especially useful in large legacy systems, in which SCA might detect

thousands of agglomerations. Examples of possible prioritization criteria are

number of anomalies in the agglomeration, severity of the code anomalies and

number of concerns affected by the agglomeration.

Subjects also suggested that SCA should provide tips on which types

of design problem each agglomeration is more likely to represent. This would

reduce the effort required to decide whether an agglomeration represents a

design problem or not. Tips could be based on recurring scenarios extracted

from replicated case studies.

Some subjects also said that SCA should use more elaborated graphical

resources. This would be useful for a programmer to analyze both code anom-

alies and agglomerations. This improvement is important because some code

anomalies are not easy to spot in the source code. For example, an Intensive

Coupling anomaly involves several elements in the source code. A graphical

representation of this anomaly would help programmers to identify and ana-

lyze elements involved in the anomaly. Finally, a graphical representation of

the implemented design would be useful as well. Analyzing the high level design

of the system may more easily spot some design problems. Thus, a graphical

representation of the implemented design would complement the information

provided by SCA.

5.3
Threats to Validity

In this section, we discuss some factors that could invalidate our main

findings. Each one of these factors, as well as actions to mitigate their impact

on the research results is described below.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 5. Identification of Design Problems with Anomaly
Agglomerations: An Empirical Evaluation 91

The first threat is related to the subjects. We used a sample of 8 subjects.

This sample may not be enough to achieve conclusive results, as this sample size

does not enable us to achieve statistically-significant results. Therefore, in order

to mitigate this threat, we designed the experiment as a quasi-experiment. This

format of experiment allowed us to (1) choose subjects without using random

assignments, and (2) draw significant conclusions based on a small sample.

In addition, the knowledge level of each subject may have direct influence on

the results presented in this work. In an effort to minimize this threat, all

participants underwent the training sessions. This procedure aimed to resolve

any gaps in knowledge or conflicts about the experiment.

Another threat to validity is concerned with the misunderstanding of the

participants in relation to some question or task. In order to mitigate this

threat, we observed the experiment, providing advice to subjects whenever

necessary. This assistance was fundamental to ensure that all participants

properly answered the questionnaires. Regarding this last item, it is important

to mention that we never interfered in the tasks performed by subjects. In fact,

we only helped them to understand all the questions and tasks.

The last threat is related to the possible difficulty of the subjects to

understand the source code used in the experimental tasks. This difficulty

may occur due to: (i) possible complexity of the software components used in

the experiment, and (ii) the time limit to complete each task. To minimize this

threat, a pilot experiment was performed aiming to adjust the time required to

perform these tasks. Since we used two software components, one software can

be “easier” than the other one regarding the identification of design problems.

To avoid this, we selected components very similar between each other, in

terms of size, complexity, number of anomalies and number of design problems.

Moreover, all subjects received a basic training about the two components, and

half of them used each of these components with a particular technique. We

did not observe any consistent results indicating one of these components was

easier to be analyzed.

5.4
Concluding Remarks

In this experiment, we evaluated two techniques in the context of design

problems identification. The compared techniques were SCA and the conven-

tional one. SCA is the new technique proposed in this work (Chapter 3). Con-

ventional technique represents the technique commonly supported by most

state-of-the-art tools for code anomaly detection. This is a fair comparison be-

cause both techniques aim to aid programmers in the identification of design

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 5. Identification of Design Problems with Anomaly
Agglomerations: An Empirical Evaluation 92

problems. For this comparison, we selected eight subjects – six professionals

and two PhD students. Subjects performed the identification of design prob-

lems in two distinct software components. For this task, they used one different

technique at a time. After the identification of design problems, subjects were

asked to provide feedback about the techniques used in the experiment.

The results of this experiment suggest that the SCA technique is better

than the conventional technique to aid programmers in the identification of

design problems. Overall, subjects identified more false positives with the

conventional technique (46%) than with SCA (34%). In addition, with the

exception of two subjects, all subjects presented unsatisfactory results when

using the conventional technique. On the other hand, half of the subjects

identified only true positives when using SCA.

Regarding the categories of agglomerations, this study allowed us to

evaluate which categories were the most useful. According to the subject’s

opinion, the most useful one was the intra-method category. In a careful

analysis of the experiment results, we observed that the popularity of intra-

method agglomerations is due to the fact that subjects did not have previous

knowledge about the component’s design. Thus, many of them preferred to use

a more simple category of agglomeration. Nevertheless, other topologies were

also considered helpful by a subset of the participants. We observed that those

participants were amongst the most experienced developers in our sample.

Confirming the empirical evidence of our previous study, the concern-based

category was considered by subjects the second most useful. This result was

reinforced by the following fact: design problems identified with the help of

concern-based agglomerations were the most complex and hard to spot.

With respect to improvements of SCA, a considerable proportion of

subjects said that SCA should provide means to prioritize agglomerations

using a flexible set of criteria. Examples of criteria are number of anomalies

and severity of the anomaly types. In addition, several subjects told that

SCA should provide tips on which types of design problem may be related

to each agglomeration category. Finally, subjects said that detailed graphical

representations of code anomalies, agglomerations and the actual program

design would be helpful to reason about design problems.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

6
Conclusion

Design problems are caused by design decisions that negatively impact

the resulting system’s quality (Garcia et al. 2009). Therefore, they must be

carefully identified and removed. However, several programmers neglect or

postpone the identification of design problems as much as they can. This

behavior usually leads the system’s maintenance to become increasingly costly

and time consuming. This is evidenced by the fact that several projects have

been discontinued in the history of the software industry due to the presence of

design problems (Garcia et al. 2009)(Hochstein & Lindvall 2005)(Macia et al.

2012b)(Macia 2013). Even though software design drives software development

in real project settings, design is rarely formally documented (Macia et al.

2012b). As a result, the identification of design problems cannot be performed

with existing documentation-driven techniques (Eichberg, Kloppenburg, Klose

& Mezini 2008)(Marwan & Aldrich 2009)(Morgan 2007)(Ubayashi, Nomura &

Tamai 2010). Hence, evidence of design problems has to be identified based on

the source code analysis (Macia et al. 2012b).

Along years of research on the software quality field, different stud-

ies (Fowler 1999)(Lanza & Marinescu 2006) have agreed with the idea

that code anomalies are relevant indicators of design problems. However,

the relationships of code anomalies and their design problems’ counterparts

are hard to understand and characterize (Macia et al. 2012a)(Macia et

al. 2012c)(Macia 2013). The main difficulty stems from the fact that design

problems are usually reified by groups of code anomalies. These groups are

not easy to spot. This happens because (1) inter-related code anomalies may

be located in “distant” code elements, and (2) the relationships between them

may not be trivial. Therefore, programmers need a technique that explores dif-

ferent forms of relationship between anomalies to search for coherent groups

of code anomalies, which may be realizing design problems. Nevertheless, to

the best of our knowledge, there is no state-of-art technique that fulfills this

demand.

In this context, this dissertation addresses the aforementioned gap in

the literature, proposing and evaluating the SCA technique. This technique

searches for different forms of agglomerations, summarizes relevant information

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 6. Conclusion 94

about each agglomeration and allows programmers to specify custom forms of

agglomeration.

In order to evaluate SCA, a multi-case study – involving 7 systems with

different sizes – was conducted. In this study, four agglomeration topologies

were characterized and studied. This study revealed that more than 70%

of all design problems are related to agglomerations in most of the target

systems. In the opposite (upstream) analysis, it was observed that most

agglomerations represent most of the design problems (50-70%). The results

confirmed that agglomerations are better than single anomaly instances to

indicate the presence of a design problem. Regarding the circumstances in

which agglomerations represent design problems, the concern-based topology

seems to be the best indicator of design problems. The intra-component and

cross-component topologies identified the highest number of design problems.

However, they also presented the highest number of instances unrelated to

design problems.

Given the relevance of agglomerations, SCA was evaluated in a controlled

experiment. This experiment compared SCA to the conventional technique,

which is the technique used by state-of-art tools to detect individual code

anomalies. In this study, 8 experienced programmers used both SCA and con-

ventional techniques to identify design problems in two software components.

The results of this study suggest that the conventional technique leads pro-

grammers to identify more false positives, i.e., most of the design problems

identified using the conventional technique were not actual design problems.

The reason is that the conventional technique provides very little information

about code anomalies and their relationships. As a result, subjects had less

information to analyze and reason about.

Apart from that, all subjects said the information provided by SCA

is relevant to the identification of design problems. Moreover, according to

the subjects, the most useful agglomeration topology is the intra-method one.

This topology was considered specially useful because it allows a bottom-up

analysis, that is, from the method’s source code to the system’s design. The

advantage of intra-method as compared to individual code anomalies is that,

(i) it is usually more severe – as it indicates two or more anomalies affecting

a single method, and (ii) it provides much more information that helps in the

identification of design problems.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 6. Conclusion 95

6.1
Contributions

In this dissertation, we discussed about the increasingly need for a

technique that aids programmers in the identification of design problems. In

this context, we designed and proposed SCA: a technique for the synthesis

of code anomalies. The proposed technique was evaluated in the context

of two empirical studies. Both studies provided evidence that SCA, in fact,

overcomes existing state-of-art techniques. In a nutshell, the contributions of

this dissertation can be described as follows.

– A technique for the identification of design problems

(Chapter 3). In order to outperform existing techniques for the

identification of design problems, we proposed SCA. The main advant-

age of SCA is that (1) it explores relationships between code anomalies

to search for code-anomaly agglomerations, and (2) it summarizes

useful information about each agglomeration. For each agglomeration,

SCA provides contextual and history information. The context of an

agglomeration is all information related to the relationships of the

agglomeration with its surrounding code elements. History consists of

all the information about the agglomeration in previous or subsequent

versions of the program being analyzed.

– Tool Support (Chapter 3). Besides designing SCA, we also provided

tool support for the use of SCA. This was provided in the form of a Ec-

lipse (Ecl 2015) plug-in called Organic. We designed Organic exclusively

for Java (Oracle 2015) programs. This tool was fundamental for the con-

duction of this dissertation’s research, as it was used in the evaluation

of SCA. Moreover, the usefulness of Organic is not restricted to this dis-

sertation. We plan to improve Organic in order to further explore it in

future studies (Section 6.2).

– Empirical Findings. Finally, we conducted two empirical studies to

evaluate SCA. A list of the main findings is presented below:

1. Agglomerations vs Individual Code Anomalies

(Chapter 4). Our first study revealed that more than 70%

of all design problems are related to agglomerations in most of the

target systems. In the opposite analysis, it was observed that most

agglomerations represent most of the design problems (50-70%).

These results confirmed our expectations that agglomerations are

better than individual anomaly instances to indicate the presence

of a design problem.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 6. Conclusion 96

2. Agglomeration Topologies (Chapters 4 and 5). Our empir-

ical studies provided evidence that concern-based topology is the

best indicator of design problems. The intra-component and cross-

component topologies were related to the highest number of design

problems. However, they also presented the highest number in-

stances unrelated to design problems. The hierarchical topology

showed to be more useful in systems with intense use of hierarchical

relationships. Finally, the intra-method topology was recognized as

the most useful topology when a programmer has limited knowledge

about the global design of a system, i.e., about other classes and

components of a system.

3. SCA vs Conventional Techniques (Chapter 5). Finally, our

controlled experiment revealed that programmers attempt to guess

more when they use the conventional technique than when they

use the SCA technique. The largest number of guesses usually led

them to identify more false positives with conventional technique.

The less amount of information provided by conventional technique

may be the reason for the large amount of guesses. Consequently,

programmers are more likely to make wrong conclusions.

6.2
Future Work

The results obtained in this work were just a first step towards the

objective of helping programmers to tackle design problems in their source

code. Along the controlled experiment, subjects provided feedback for the

improvement of SCA. Moreover, new ideas emerged from the results presented

in this dissertation. Therefore, the following future work is proposed:

– Our first empirical study revealed that concern-overload agglomerations

are better indicators of design problems than other topologies. How-

ever, most systems do not have a complete and up-to-date specific-

ation of components and concerns. In fact, this happens because the

manual identification of components and concerns is a time consuming

and error-prone task. Therefore, in order to allow programmers to use

concern-overload agglomerations, we plan to integrate SCA with differ-

ent techniques (Garcia et al. 2013) for automated extraction of com-

ponents and concerns. With this integration, SCA is able to search for

concern-overload agglomerations, without requiring manual effort from

the programmer.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Chapter 6. Conclusion 97

– A considerable proportion of subjects said that SCA should provide

means to prioritize agglomerations using alternative criteria. This would

help a programmer to prioritize the most critical agglomerations. Ex-

amples of prioritization criteria are number of anomalies, severity of the

code anomalies and number of concerns.

– In the empirical study subjects also suggested that SCA should provide

tips on which types of design problem each agglomeration is more likely

to represent. This would reduce the effort required to decide whether

an agglomeration represents a design problem. Tips could be based on

recurring scenarios extracted from case studies. For instance, we observed

that Overused Interface problems are often related to concern-based

agglomerations.

– Some subjects also said that SCA should use more elaborated graphical

resources. This would be useful for a programmer to analyze both code

anomalies and agglomerations. This is important because some code

anomalies are not easy to spot in the source code. For example, an

Intensive Coupling anomaly involves several elements in the source code.

A graphical representation of this anomaly would help programmers

to identify and analyze elements involved in the anomaly. Finally, a

graphical representation of the implemented design would be useful as

well. Some design problems may be more easily spotted by analyzing

the high level design of the system. Thus, a graphical representation of

the implemented design would complement the information provided by

SCA.

– The identification of design problems is an important step towards the

improvement of a system design. However, other steps are required. A

next step would be the removal of design problems. The most common

form of removing design problems is by refactoring the source code.

Refactoring is the process of improving the program structure without

changing its behavior. Current state-of-art techniques for refactoring

explores very little information about the source code. In general, they

only support semi-automated refactoring based on instructions provided

by the programmer. Some refactoring techniques use individual code

anomalies to suggest refactorings. However, individual code anomalies

may not provide enough information for a programmer to decide if the

source code should be refactored. Therefore, given the aforementioned

limitation, a better refactoring technique is required. A technique that

uses SCA would be able to suggest and rank refactorings that are more

likely to remove design problems.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Bibliography

Abbes, M., Khomh, F., Gueheneuc, Y. & Antoniol, G. (2011), An empirical

study of the impact of two antipatterns, blob and spaghetti code, on program

comprehension, in ‘Proceedings of the 15th European Software Engineering

Conference; Oldenburg, Germany’, pp. 181–190.

Apa (2015), ‘Apache oodt source code’. URL

https://github.com/apache/oodt.

Bass, L., Clements, P. & Kazman, R. (2003), Software Architecture in

Practice, Addison-Wesley Professional.

Baxter, G., Frean, M., Noble, J., Rickerby, M., Smith, H., Visser, M., Melton,

H. & Tempero, E. (2006), Understanding the shape of java software, in

‘Proceedings of the 21st Annual ACM SIGPLAN Conference on

Object-oriented Programming Systems, Languages, and Applications’,

pp. 397–412.

Bloomfield, V. A. (2014), Using R for Numerical Analysis in Science and

Engineering, CRC Press.

Booch, G. (2004), Object-Oriented Analysis and Design with Applications

(3rd Edition), Addison Wesley, Redwood City, CA, USA.

Booch, G., Rumbaugh, J. & Jacobson, I. (2005), The Unified Modeling

Language User Guide, Addison-Wesley, Boston.

Carneiro, G., Silva, M., Mara, L., Figueiredo, E., Sant’Anna, C., Garcia, A.

& Mendonça, M. (2010), Identifying code smells with multiple concern views,

in ‘Software Engineering (SBES), 2010 Brazilian Symposium on; Salvador,

Brazil’, IEEE, pp. 128–137.

Cornfield, J. (1951), ‘A method of estimating comparative rates from clinical

data. applications to cancer of the lung, breast, and cervix’.

D’Ambros, M., Bacchelli, A. & Lanza, M. (2010), On the impact of design

flaws on software defects, in ‘Proceedings of the 10th International

Conference on Quality Software; Zhangjiajie, China’, pp. 23–31.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Bibliography 99

Ecl (2015), ‘Eclipse integrated development environment’. URL

http://www.eclipse.org.

Eichberg, M., Kloppenburg, S., Klose, K. & Mezini, M. (2008), Defining and

continuous checking of structural program dependencies, in ‘Proceedings of

the 30th International Conference on Software Engineering; Leipzig,

Germany’, pp. 391–400.

Emden, E. & Moonen, L. (2002), Java quality assurance by detecting code

smells, in ‘Proceedings of the 9th Working Conference on Reverse

Engineering; Richmond, USA’, p. 97.

Fisher, R. A. (1922), ‘On the interpretation of χ2 from contingency tables,

and the calculation of p’, Journal of the Royal Statistical Society pp. 87–94.

Fowler, M. (1999), Refactoring: Improving the Design of Existing Code,

Addison-Wesley Professional, Boston.

Freeman, P. & David, H. (2004), ‘A science of design for software-intensive

systems’, Communications of the ACM 47(8), 19–21.

Garcia, J., Ivkovic, I. & Medvidovic, N. (2013), A comparative analysis of

software architecture recovery techniques, in ‘Proceedings of the 28th

IEEE/ACM International Conference on Automated Software Engineering;

Palo Alto, USA’, pp. 486–496.

Garcia, J., Popescu, D., Edwards, G. & Medvidovic, N. (2009), Identifying

architectural bad smells, in ‘Proceedings of the 13th European Conference on

Software Maintenance and Reengineering; Kaiserslautern, Germany’, IEEE

Computer Society, pp. 255–258.

Gı̂rba, T., Ducasse, S., Kuhn, A., Marinescu, R. & Daniel, R. (2007), Using

concept analysis to detect co-change patterns, in ‘Ninth international

workshop on Principles of software evolution: in conjunction with the 6th

ESEC/FSE joint meeting’, ACM, pp. 83–89.

Godfrey, M. & Lee, E. (2000), Secrets from the monster: Extracting Mozilla’s

software architecture, in ‘Proc. of the Second Intl. Symposium on

Constructing Software Engineering Tools (CoSET-00); Limerick, Ireland’,

pp. 15–23.

Gorton, I. (2006), Essential Software Architecture, Springer-Verlag.

Hochstein, L. & Lindvall, M. (2005), ‘Combating architectural degeneration:

A survey’, Information and Software Technology 47, 643–656.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Bibliography 100

Khomh, K., Penta, M. D. & Gueheneuc, Y. (2009), An exploratory study of

the impact of code smells on software change-proneness, in ‘Proceedings of

the 16th Working Conference on Reverse Engineering; Lille, France’,

pp. 75–84.

Kim, M., Sazawal, V., Notkin, D. & Murphy, G. (2005), An empirical study

of code clone genealogies, in ‘Proceedings of the 10th European Software

engineering Conference; Lisbon, Portugal’, pp. 187–196.

Lanza, M. & Marinescu, R. (2006), Object-Oriented Metrics in Practice,

Springer, Heidelberg.

Louridas, P., Spinellis, D. & Vlachos, V. (2008), ‘Power laws in software’,

ACM Trans. Softw. Eng. Methodol. 18, 1–26.

Lozano, A. & Wermelinger, M. (2008), Assessing the effect of clones of

changeability, in ‘Proceedings of the 24th IEEE International Conference on

Software Maintenance; Beijing, China’, pp. 227–236.

MacCormack, A., Rusnak, J. & Baldwin, C. (2006), ‘Exploring the structure

of complex software designs: An empirical study of open source and

proprietary code’, Manage. Sci. 52(7), 1015–1030.

Macia, I. (2013), On the Detection of Architecturally-Relevant Code

Anomalies in Software Systems, PhD thesis, Pontifical Catholic University of

Rio de Janeiro, Informatics Department.

Macia, I., Arcoverde, R., Cirilo, E., Garcia, A. & Staa, A. (2012a),

Supporting the identification of architecturally-relevant code anomalies, in

‘Proceedings of the 28th IEEE International Conference on Software

Maintenance; Trento, Italy’, pp. 662–665.

Macia, I., Arcoverde, R., Garcia, A., Chavez, C. & Staa, A. (2012b), On the

relevance of code anomalies for identifying architecture degradation

symptoms, in ‘Proceedings of the 16th European Conference on Software

Maintenance and Reengineering; Szeged, Hungary’, pp. 277–286.

Macia, I., Garcia, J., Popescu, D., Garcia, A., Medvidovic, N. & Staa, A.

(2012c), Are automatically-detected code anomalies relevant to architectural

modularity? An exploratory analysis of evolving systems, in ‘Proceedings of

the 11st International Conference on Aspect-Oriented Software Development;

Postdam, Germany’, pp. 167–178.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Bibliography 101

Mara, L., Honorato, G., Dantas, F., Garcia, A. & Lucena, C. (2011),

Hist-inspect: A tool for history-sensitive detection of code smells, in

‘Proceedings of the 10th annual International Conference on Aspect-oriented

Software Development; Porto de Galinhas, Brazil’, pp. 65–66.

Marinescu (2004), Detection strategies: metrics-based rules for detecting

design flaws, in ‘Proceedings of 20th IEEE International Conference on

Software Maintenance (ICSM); Chicago, USA’, pp. 350–359.

Martin, R. (2002), Agile Principles, Patterns, and Practices, Prentice Hall,

New Jersey.

Marwan, A. & Aldrich, J. (2009), Static extraction and conformance analysis

of hierarchical runtime architectural structure using annotations, in

‘Proceedings of the 24th ACM SIGPLAN conference companion on Object

oriented programming systems languages and applications; Orlando, USA’,

pp. 321–340.

Mattmann, C., Crichton, D., Medvidovic, N. & Hughes, S. (2006), A software

architecture-based framework for highly distributed and data intensive

scientific applications, in ‘Proceedings of the 28th International Conference

on Software Engineering: Software Engineering Achievements Track;

Shanghai, China’, pp. 721–730.

Mehta, N., Medvidovic, N. & Phadke, S. (2000), Towards a taxonomy of

software connectors, in ‘Proceedings of the 22nd International Conference on

Software Engineering (ICSE); Limerick, Ireland’, pp. 178–187.

Moha, N., Gueheneuc, Y., Duchien, L. & Meur, A. L. (2010), ‘Decor: A

method for the specification and detection of code and design smells’, IEEE

Transaction on Software Engineering 36, 20–36.

Morgan, C. (2007), A static aspect language of checking design rules, in

‘Proceedings of the 6th international conference on Aspect-oriented software

development; Vancouver, Canada’, pp. 63–72.

Murphy-Hill, E. & Black, A. P. (2010), An interactive ambient visualization

for code smells, in ‘Proceedings of the 5th international symposium on

Software visualization; Salt Lake City, USA’, ACM, pp. 5–14.

Oizumi, W. & Garcia, A. (2015), ‘Organic: A prototype tool for the synthesis

of code anomalies’. URL http://wnoizumi.github.io/organic/.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Bibliography 102

Oizumi, W., Garcia, A., Colanzi, T., Ferreira, M. & Staa, A. (2014a), When

code-anomaly agglomerations represent architectural problems? An

exploratory study, in ‘Proceedings of the 2014 Brazilian Symposium on

Software Engineering (SBES); Maceio, Brazil’, pp. 91–100.

Oizumi, W., Garcia, A., Colanzi, T., Staa, A. & Ferreira, M. (2015), ‘On the

relationship of code-anomaly agglomerations and architectural problems’,

Journal of Software Engineering Research and Development 3(1), 1–22.

Oizumi, W., Garcia, A., Sousa, L., Albuquerque, D. & Cedrim, D. (2014b),

Towards the synthesis of architecturally-relevant code anomalies, in

‘Proceedings of the 11th Workshop on Software Modularity; Maceio, Brazil’,

pp. 39–52.

Oizumi, W., Garcia, A., Sousa, L., Cafeo, B. & Zhao, Y. (2016), Code

anomalies flock together: Exploring code anomaly agglomerations for locating

design problems, in ‘The 38th International Conference on Software

Engineering; Austin, USA (Submitted)’.

Olbrich, S. M., Cruzes, D. S. & Sjoberg, D. I. K. (2010), Are all code smells

harmful? A study of god classes and brain classes in the evolution of three

open source systems, in ‘Proceedings of the 26th IEEE International

Conference on Software Maintenance; Timisoara, Romania’, pp. 1–10.

Oracle (2015), ‘Java 7 programming language’. URL

http://www.oracle.com/java.

Perry, D. E. & Wolf, A. L. (1992), ‘Foundations for the study of software

architecture’, ACM Software Engineering Notes 17, 40–52.

Rapu, D., Ducasse, S., Gı̂rba, T. & Marinescu, R. (2004), Using history

information to improve design flaws detection, in ‘Software Maintenance and

Reengineering, 2004. CSMR 2004. Proceedings. Eighth European Conference

on; Tampere, Finland’, IEEE, pp. 223–232.

Ratzinger, J., Fischer, M. & Gall, H. (2005), Improving evolvability through

refactoring, Vol. 30, ACM.

Schach, S., Jin, B., Wright, D., Heller, G. & Offutt, A. (2002),

‘Maintainability of the linux kernel’, Software, IEE Proceedings -

149(1), 18–23.

Shadish, W. R., Cook, T. D. & Campbell, D. T. (2001), Experimental and

Quasi-Experimental Designs for Generalized Causal Inference, 2 ed.,

Houghton Mifflin.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

Bibliography 103

Sjobert, D., Yamashita, A., Anda, B., Mockus, A. & Dyba, T. (2013),

‘Quantifying the effect of code smells on maintenance effort’, IEEE

Transaction on Software Engineering 39, 1144–1156.

Soares, S., Laureano, E. & Borba, P. (2002), Implementing distribution and

persistence aspects with aspectj, in ‘Proceedings of the 17th ACM

Conference on Object-Oriented Programming, Systems, Languages, and

Applications; Seattle, USA’, ACM Press, pp. 174–190.

Suryanarayana, G., Samarthyam, G. & Sharmar, T. (2014), Refactoring for

Software Design Smells: Managing Technical Debt, Morgan Kaufmann.

Taylor, R., Medvidovic, N. & Dashofy, E. (2009), Software Architecture:

Foundations, Theory, and Practice, Wiley Publishing.

Ubayashi, N., Nomura, J. & Tamai, T. (2010), Archface: A contract place

where architectural design and code meet together, in ‘Proceedings of the

32nd International Conference on Software Engineering; Cape Town, South

Africa’, pp. 75–84.

Vale, G., Albuquerque, D., Figueiredo, E. & Garcia, A. (2015), Defining

metric thresholds for software product lines: A comparative study, in

‘Proceedings of the 19th International Conference on Software Product Line;

Nashville, Tennessee’, SPLC ’15, ACM, New York, NY, USA, pp. 176–185.

van Gurp, J. & Bosch, J. (2002), ‘Design erosion: problems and causes’,

Journal of Systems and Software 61(2), 105 – 119.

Wettel, R. & Lanza, M. (2008), Visually localizing design problems with

disharmony maps, in ‘Proceedings of the 4th ACM symposium on Software

visualization’, ACM, pp. 155–164.

Wong, S., Cai, Y., Kim, M. & Dalton, M. (2011), Detecting software

modularity violations, in ‘In Proceedings of the 33rd International

Conference on Software Engineering; Honolulu, USA’, pp. 411–420.

Yamashita, A. & Moonen, L. (2013), Exploring the impact of inter-smell

relations on software maintainability: an empirical study, in ‘Proceedings of

the 35th International Conference on Software Engineering; San Francisco,

USA’, pp. 682–691.

Young, T. J. (2005), Using aspectj to build a software product line for mobile

devices. MSc dissertation, in ‘University of British Columbia, Department of

Computer Science’, pp. 1–6.

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº null

DBD
PUC-Rio - Certificação Digital Nº 1312415/CA

